新型自支撑聚砜正渗透膜的制备研究

来源 :第九届全国膜与膜过程学术报告会 | 被引量 : 0次 | 上传用户:acmilanno1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  本文通过溶剂蒸发法制备了自支撑具有均质致密结构的聚砜纳米膜.通过改变溶剂种类和成膜温度,可以实现纳米膜孔径的有效调控.当选用DMAc作为溶剂时,所制得的聚砜膜孔径在1nm左右,相应地,其对硫酸钠的截留率可以达到80~82%,当提高成膜温度到110℃时,膜的孔径变小,膜对硫酸钠的截留率可以提升到87%.同时,所制得的膜具有较高的机械强度,力学强度高达66MPa.在此基础上,通过向聚砜膜中掺杂0~5wt%的磺化聚砜,可以进一步提升膜的渗透性能和分离性能.通过掺杂1wt%的磺化聚砜,膜的孔径进一步缩小,而且膜的表面亲水性和荷电性得到增强,相应地,膜在压力驱动过程中的水通量从0.15LMH升高到0.17LMH,同时膜对硫酸钠的截留率提升到90%以上.通过降低膜的厚度,膜的透过性能得到显著提升,46~219nm的自支撑超薄聚砜/磺化聚砜纳米膜被应用于正渗透的过程中,当使用1.25mol/L硫酸钠溶液作为驱动溶液,纯水作为原料液时,46nm的超薄膜的水通量可以达到46.4LMH.这种自支撑超薄纳米膜为高性能正渗透膜的制备提供了新的思路.
其他文献
T型分子筛具有菱钾沸石(OFF)和毛沸石(ERI)的共生晶型,有效孔道尺寸为0.36 nm×0.51 nm,硅铝比为3-4,对酸性环境下的有机溶剂脱水体系表现出良好的稳定性.近年来,有关中空纤维陶瓷膜的研究受到广泛关注,该类膜的直径可达1mm以下,由其所构建的膜组件装填膜面积高达1000 m2/m3以上.另外,四通道中空纤维支撑体具有交错连接的结构,其断裂负荷显著增强,是相同条件下单通道中空纤维的
陶瓷膜具有耐化学腐蚀、耐高温等优点,被广泛应用于污水处理、海水淡化及化学与石油工业等领域。常见的陶瓷膜构型主要有管式和平板式,但因较低的装填密度(< 250 m2/m3),导致设备投资过高。近年来,陶瓷中空纤维膜由于装填密度高(可达1000 m2/m3)、传质阻力低等优点,受到人们的广泛关注。然而在实际应用过程中,常规的陶瓷中空纤维仍存在机械强度低、微结构单一等不足。本文采用相转化和高温烧结相结合
含油废水广泛产生于涉油工业和日常生活,成为全球范围内新的挑战.膜分离技术处理含油废水时,油污染是限制分离通量和分离效率的首要问题.制备超浸润、高通量、抗污染的分离膜来实现含油废水(乳化油水和油水混合物)的快速、有效分离己成为处理含油废水公认的有效手段.基于一维纳米材料单壁碳纳米管制备的纳米级厚的超浸润、超薄多孔膜能实现乳化油水的超快、高效分离.得益于其超薄的膜厚度,该类膜展现出高达30,000 L
MOR沸石分子筛(丝光沸石,Mordenite,简写MOR),是人类认识最早的沸石分子筛之一。具有适中Si/A1摩尔比(5~10)的MOR沸石分子筛构成的MOR沸石膜不仅拥有良好的耐酸性,同时保持高的亲水性,此外,其孔道结构体系适宜水分子透过,适用于有机物脱水及苛刻酸性环境下乙酸等有机物脱水,是一种具有较大发展潜力的耐酸透水沸石膜材料。微波辅助晶化制备沸石分子筛是自20世纪80年代末开始并发展起来
会议
聚丙烯腈(PAN)因其良好的物化性能,PAN基微孔膜己被广泛应用于透析[1]、超滤[2]、渗透汽化[3]等领域.由于PAN熔点高于分解温度,加热时未经熔融就己交联环化,常采用非溶剂致相分离法(NIPS)制备PAN基微孔膜.NIPS法需要使用大量强极性有毒溶剂,造成资源浪费与环境污染.此外,还存在工艺复杂、控制参数多、膜结构不易控制等问题.热致相分离(TIPS)法[4]因其具有孔隙率高、孔径分布窄、
会议
聚四氟乙烯(PTFE)具有优良的化学稳定性,卓越的耐腐蚀性和耐温性,强疏水性,是膜蒸馏(MD)和膜接触器(MC)的理想材料.目前,PTFE中空纤维膜多采用“糊状挤出法”制备:采用高分子量的PTFE树脂,经“挤出-拉伸-烧结”等工艺流程得到.为了考察烧结时间对膜性能的影响,本实验中制备了具有不同烧结时间(2-8min)的PTFE中空纤维膜,并对其熔点,结晶度,孔隙率,抗拉强度等性质进行了表征.实验结
本研究通过原位共混的方法,成功制备了聚对苯二甲酰对苯二胺(PPTA)/聚砜(PSf)耐压密膜.FTIR、XPS等测试结果表明在PSf/N-甲基吡咯烷酮(NMP)溶液中成功合成了PPTA,且PPTA的亲水性端基官能团-NH2富集于共混膜表面.水接触角测试表明随着PPTA含量增加,原位共混膜表面润湿性逐渐增强.同时,DCS结果表明,其Tg温度也随着PPTA含量增加而增大,从纯PSf膜的Tg=180℃增
在膜中添加TiO2纳米粒子可有效改善膜的亲水性及机械强度,但过量添加会造成团聚,从而影响膜的分离性能。实验制备共混TiO2纳米粒子的PVDF中空纤维超滤膜,通过FT-IR表征膜的化学成分,SEM观察其微观结构的变化,考察了添加不同量的纳米TiO2粒子对PVDF膜的纯水通量、截留率、机械强度、孔隙率及亲水性等性能的影响。结果 与未添加纳米TiO2粒子的PVDF中空纤维膜相比,其微观结构发生明显变化,
膜分离技术以其高效、节能的特点近年来备受关注。膜材料是膜分离技术的核心,无机膜材料如炭分子筛膜、沸石膜、陶瓷膜等尽管具有良好的热和化学稳定性及较高的分离性能,但较高的制造成本限制其大规模工业化应用。而聚合物膜材料因制备工艺相对简单,成本较低得到广泛的应用,但其较差的热和化学稳定性限制了其在一些苛刻条件下的应用。热致交联可以使聚合物膜形成具有交联网状结构的交联膜,可明显提高聚合物膜的热和化学稳定性。
传统膜过程采用水力学压力驱动,而正渗透(Forward Osmosis)利用膜两侧的渗透压差作为驱动力,具有低能耗、膜污染容易恢复等优点.因此正渗透在近些年来受到广泛的关注.作为一个完整的正渗透过程,同时应包括驱动溶质回收步骤,而驱动溶质的回收能耗占整个正渗透过程能耗的比例很大.为了评价不同的驱动溶质对正渗透过程能耗的影响,利用Aspen软件平台模拟了包括驱动溶质回收步骤在内的完整正渗透过程能耗,