论文部分内容阅读
有限元后处理中超收敛计算的EEP(单元能量投影)法以及基于该法的自适应分析方法对线性ODE(常微分方程)问题的求解已经获得了全面成功,也推动了非线性ODE问题自适应求解的研究。经过研究,已经实现了一维有限元自适应分析技术从线性到非线性的跨越,本文意在对这方面的进展作一简要综述与报道。文中提出一种基于EEP法的一维非线性有限元自适应求解方法,其基本思想足通过线性化,将现有的线性问题自适应求解方法直接引入非线性问题求解,而无需单独建立非线性问题的超收敛计算公式和自适应算法,从而构成一个统一的、通用的非线性问题自适应求解算法。文中给出的数值算例表明所提出的算法高效、稳定、通用、可靠,解答可逐点按最大模度量满足用户给定的误差限,可作为先进高效的非线性ODE求解器的核心理论和算法。