本文针对传统燃煤发电产生的环境问题,结合超临界水氧化技术的优点,给出一种新型超临界水中煤直接氧化发电循环系统,该系统用氧化反应器代替传统燃煤发电系统中的锅炉,将传统燃煤发电工艺中的燃料系统与汽水系统相结合,进料系统中的煤和溶于超临界水的氧在氧化反应器中进行复杂的反应,氧化后的高温高压气体及超临界水携带氧化反应放出的大量热量进入汽轮机中进行膨胀做功发电,从汽轮机出来的乏汽随后进入回热器中加热循环水,
Acetate has a strong inhibitory effect on hydrogen production[1-3].We developed an integrated system taking electrodialysis with bipolar membrane as separation unit coupling with an anaerobic bioreact
A biomass gasification model was developed by Aspen Plus,which was based Gibbs free energy minimization and was modified by the restricted equilibrium of the RGIBBS reactor.
光合细菌利用光能降解有机废水制取氢气,同时有效降低废水COD,并不产生二次污染,是一种环境友好型新能源生产方式。固氮酶是光合细菌的产氢酶,其活性受到严格调控。
硼氢化钠因具有较高的质量储氢容量(10.6 wt.%)而成为较有潜力的储氢材料之一[1].在有催化剂存在的条件下,硼氢化钠可以通过水解的方式释放氢气[2,3],因此,开发性能较优,价格便宜的催化剂成为硼氢化钠水解制氢的关键.
The one-step oxidation of benzene to phenol using H2 and O2 as co-reactants on a palladium membrane reactor is a promising process and has been paid more attention since Niwa and co-workers first repo
Calcium borohydride,Ca(BH4)2,with an attractive hydrogen capacity of 11.4 wt%and favorable thermodynamics,has been acknowledged as an ideal candidate for hydrogen storage materials[1].
In recent years,more and more attentions are paid to concentrating solar power(CSP)plants because of the pollution free and sustainable solar energy.To provide stable and dispatchable power,there need
目前,能源短缺仍是当今世界面临的重要问题.氢能是一种清洁、可再生的新型可持续能源[1].在众多的制氢技术中,利用废水和生物质进行生物制氢成为未来最具潜力的制氢技术之一[2].特别是光发酵生物制氢能将废水处理、能源开发和太阳能利用结合起来,因此引起了广泛的关注[3].
Metal hydride material can be used for the effective separation of hydrogen from gas mixture.However,some impurities in the feedstock gas may cause the poisoning of the material and failure of the sys