空心球形NiMn2O4负极材料的制备及电化学性能研究

来源 :第30届全国化学与物理电源学术年会 | 被引量 : 0次 | 上传用户:lzd_1983
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于“柯肯达尔效应”原理,利用球形前驱体制备了空心球形NiMn2O4尖晶石.采用X射线衍射(XRD)和扫描电镜(SEM)表征了不同温度下煅烧产物的组分、结构和对应温度下的形貌特征.作为锂离子负极材料进行电化学性能测试,750℃下煅烧样品电化学性能最佳,特别是具有优良的倍率性能.
其他文献
本课题组通过小同方法制备出含钠锰、镍氧化物正极材料Na2/3[Ni1/3Mn2/3]O2.XRD测试表明介成的正极材料为P2相层状化合物,材料颗粒尺寸300nm左右。ICP测试显示喷雾十燥法制备的材料过渡金属离子最接近理论配比。充放电性能测试显示固相球磨法制备的材料比容量和倍率性能都明显次于喷雾十燥法制备的材料。喷雾十燥法制备的材料。0.1C首圈放电比容量达到160mAhg-1,遗憾的是材料循环稳
以C2H2为碳源,Fe为催化剂,采用催化化学气相沉积法(CCVD)在Li2CO3和纳米FePO4原料上一步合成LiFePO4/C复合材料.对比考察了碳热还原法、催化气相沉积法制备的LiFePO4/C正极材料与金属锂组成的实验室电池的电化学性能,结果表明,后者具有较好的电化学性能,特别是在高倍率条件下(5-10C)容量保持率高于前者.SEM测试发现,C2H2在反应过程中裂解成碳并组装成碳纳米纤维贯穿
利用共沉淀法制备了富锂材料Li[Ni1/4Li1/6Mn1/2]O2.所得样品的结构和形貌分别采用X射线光谱法(XRD)和扫描电子显微镜法(SEM)进行表征.同时,对样品的电化学性能进行了测试和分析.
锂离子电池作为目前商业化的最高效的储能设备,已经被广泛应用于移动电子设备中。为了进一步提高其能量密度,需要开发具有高容量和高电压的锂离子电池正极材料。目前高电压正极材料的研究已经有很多,已经报道的5V正极材料有LiNi0.5Mn1.5O4和LiCoPO4等。然而,这些材料的应用由于电解液的局限而受到阻碍。传统基于碳酸酯的电解液会在4.5V电压以上发生氧化分解,而且材料表面的过渡金属会加速和催化电解
本文采用溶胶凝胶合成法,以CH3COOLi·2H2O、Mn(CH3COO)2·4H2O和TEOS为原料,成功地合成了Li2MnSiO4正极材料.恒流充放电测试结果表明:Li2MnSiO4正极材料在0.06C倍率下的首次充放电容量分别为180.3和69.4mAh/g,经过29次的循环之后,Li2MnSiO4正极材料放电比容量由首次的69.4衰减至20.1mAh/g.
本次工作中,开发出一种制备LiMnPO4凝胶前驱体的新型溶胶-凝胶法,同时引入约3nm厚的石墨烯纳米微片(GNPs)对LiMnPO4进行修饰。与乙炔黑(AB)相比,石墨烯纳米微片的引入大大提高了材料的电化学性能,这主要由于石墨烯纳米微片的引入使之形成了有效的导电网络,缓解了团聚,并且与LiMnPO4/C颗粒之间有着较强的协同作用。所得LiMnPO4/GNPs材料,在0.05C的放电倍率下,首次放电
富锂正极材料xLi2MnO3.(1-x)LiMO2是极具应用前景的动力锂离子电池正极材料之一。在富锂正极材料xLi2MnO3.(1-x)LiMO2(M=Co,Ni,Cr……)中,为了进一步降低成本和提高电化学性能,资源丰富,低成本的LiFeO2已经被用来合成富锂正极材料。为了进一步优化LiFeO2-Li2MnO3固溶体组成,提高LiFeO2-Li2MnO3材料的电化学性能,本文采用了“溶胶-喷雾干
采用碳热还原法合成了Cu离子掺杂的磷酸钒锂材料。XRD测试显示,合成的正极材料为单斜结构; XANES研究表明,Cu离子掺杂可以稳定材料的结构;充放电测试表明,Cu离子掺杂会改变Li3V2(PO4)3材料的放电行为,增加了3.65V以下放电平台的容量衰减,并在4.05V出现一个新的短小的放电平台。
与同结构LiFePO4相比,LiMnPO4材料电压高(4.1V),正好位于现有电解液体系的稳定电化学窗口,在同等比放电容量条件下,能量密度将比磷酸铁锂电池高出20%左右,因此,LiMnPO4作为新一代高能量密度动力电池正极材料备受瞩目。目前限制其应用的主要因素是极差的导电性。为此,掺杂、包覆等改性研究成为该材料当前研究热点。本文采用水热法制备了LiMn0.7Fe0.3PO4/C纳米正极复合材料,通
本文以异丙醇铝为包覆源通过流变相法合成Al2O3包覆LiNi0.5Co0.2Mn0.3O2的锂离子电池正极材料,并用SEM、XRD、EIS、恒电流充放电等方法研究了Al2O3包覆对LiNi0.5Co0.2Mn0.3O2结构和电化学性能的影响。与纯三元材料LiNi0.5Co0.2Mn0.3O2相比,包覆后样品在高截止电压(4.6V)下表现出优良的循环性能。