基于数值求解全波Maxwell-Bloch方程的极端超快非线性光学研究

来源 :中国物理学会2016年秋季会议 | 被引量 : 0次 | 上传用户:fishe1042
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  超快少周期激光与原子分子等物质的相互作用研究一直隶属超快强激光场物理领域的前沿.随着超快极端新型光场的出现,这方面的研究正展现出新的研究热点.本课题组建立和逐步升级发展了无慢变包络近似和旋转波近似下的全波Maxwell-Bloch模型及其数值仿真平台.实现了1维,2维和3维数值的并行化运算.最近在"新型超快光传输及其次生辐射研究"方面取得了系列新进展:(1)研究了超快脉冲在稠密介质中的传输,在反射光谱上发现了一个反常的低频尖峰1.它的出现与先前一直被忽视的光的背向传输有关,低频峰产生的根源是移动吸收前沿的多普勒红移,而非四波混频效应.讨论了低频峰随脉冲和介质参数的变化,从物理概念上统一了周期量级脉冲的低频峰和长脉冲的非线性趋肤效应.(2)探讨了超快光束在超薄介质中的传输,发现了与经典干涉理论相悖的反常干涉增强,该反常现象是激发脉冲过后介质中残留能量伴生的瞬态效应的必然结果2;(3)研究了超快涡旋光束在稠密原子介质中的传输,预言了非线性涡旋前驱子的存在3,并揭示了此类前驱子的涡旋演化等特性.(4)利用少周期激光做种子对THz量子级联激光器(QCL)的超快动力学行为进行了研究,发现在考虑固有偶极矩的情况下,QCL能实现超带宽准频率梳输出4.
其他文献
窄线宽布里渊光纤激光器因其较低的相位噪声和强度噪声快速成为了相干通信、高分辨率光谱学和传感器的理想光源[1-3]。目前,单频光纤激光器输出功率可以达到瓦级,但是很难同时获得高信噪比和窄线宽输出。我们报道了一种瓦级的高功率,高信噪比,超窄线宽的1μm波段布里渊单频光纤激光器。该激光器采用全光纤结构,布里渊泵浦系统由连续自反馈注入锁定单频光纤激光器作为种子源和一级包层抽运掺镱光纤放大器组成。
实验表明,不同缺陷类型对低维GaN材料如薄膜、纳米线等的能带、光学性能有非常明显的影响.本文采用基于密度泛函理论的第一性原理方法系统讨论了GaN纳米线中可能存在的缺陷类型及缺陷存在的位置.本文主要考虑了在富氮或贫氮氛围生长纳米线时,纳米线中可能出现的Ga空位(VGa)、Ga间隙原子(IGa),N空位(VN)及N间隙原子(IN)等缺陷,并讨论了缺陷可能出现的不同位置,如纳米线内部、纳米线表面、临近表
利用掺镱非线性光纤放大器来产生宽光谱,并用可调滤波器来实现光谱连续可变的超短脉冲输出.实验中,基于增加掺镱光纤放大器的掺杂光纤长度,我们实现了1050 nm-1225 nm的平坦的宽光谱输出.放大器在最大泵浦14 W的时候,输出的平均功率为7.8 W.输出脉冲的重复频率为89 MHz.在输出端口放置由平行光栅对和光阑组成的压缩滤波系统,可以获得脉冲宽度、中心波长以及光谱宽度均灵活可调的超短脉冲输出
Since its discovery in 2009 [1,2],the low-energy structure(LES)in above-threshold ionization(ATI)spectrum at mid-infrared wavelengths has attracted increasing attention in past years.A closer inspecti
随着现代科技的发展,超快激光与原子分子相互作用产生了许多新的强场物理过程,如高次谐波发射,阈上电离和非序列双电离等.在强激光场中,原子隧穿电离产生的电子在振荡的激光场作用下,会返回核附近,并与核发生弹性或非弹性碰撞.这种重碰机制很好地解释原子的一些上述强场物理现象.2008年[1]Eichmann小组观测到在强激光场中产生的处于里德堡激发态的中性He原子,指出该中性He原子的里德堡态是隧穿电子返回
空芯光纤作为光与物质相互作用的良好平台,可以应用于生物医学和传感等领域。然而,在研究低折射率的液体时,由于传统的石英毛细管无法形成全反射导光,因此需要研究新的导光机制。本文提出一种利用最新研发的空芯反谐振光纤实现低折射率波导的新方法,即通过在石英基的空芯反谐振光纤的纤芯和包层孔中充入低折射率液体,形成反谐振反射导光,其导光范围由包层石英壁的厚度和液体折射率决定,可以实现覆盖可见光和近红外宽光谱的低
研究了皮秒再生系统的放大过程中,小信号放大与大信号放大所带来的光谱变化,实验结果表明,再生放大系统中受小信号放大及大信号放大的增益放大的影响,放大过程引起激光光谱的烧空效应以及频率牵引等现象,使得再生放大之前的种子光脉冲光谱随着放大逐渐出现光谱增强分立化,并伴有边频光谱出现[图1].再生放大过程中,起先为小信号放大,随着激光放大的加强,激光强度越来越大,泵浦增益系数逐渐减少,放大过程由小信号放大过
实验利用2μm窄线宽光纤超荧光源(SFS)作为种子源,与传统的、近似线宽的光纤激光器作为种子源的相比,抑制SBS效应的能力比激光高12.3 dB.该方法为高功率窄线宽MOPA系统功率的进一步提升提供了有效途径.为验证二者差异,实验采用脉冲泵浦,提高了SBS产生效率,并使脉冲宽度与放大器长度相匹配,降低了SBS阈值.
报道了基于定向图案砷化镓(orientation-patterned gallium arsenide,OP-GaAs)晶体的飞秒脉冲同步泵浦双谐振中红外光参量振荡器(optical parametric oscillator,OPO).该OPO的泵浦源为中心波长1.93μm的掺铥光纤激光器,重复频率为115 MHz,脉宽为90 fs,最高输出功率为350 mW.掺铥光纤激光器通过超连续光谱展宽及
固体系统高次谐波在理论上具有双平台结构1),但由于第二个谐波平台强度较弱,在实验上只观测到第一平台,其截止频率与电场强度成正比2)。基于求解含时薛定谔方程,我们从理论上提出在空间非均匀强激光场中固体高次谐波的产率增强方案3)。高次谐波的第二个平台的强度可增强两三个数量级并与第一平台的强度相当。
会议