高分子与纳米颗粒相互作用的模拟研究

来源 :第十一届全国软物质与生命物质物理学术会议 | 被引量 : 0次 | 上传用户:hnyinhao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  高分子纳米复合材料中的高分子和细胞内部的生物大分子都处于拥挤空间中,拥挤物影响着高分子各个方面的性质。我们发现高分子与拥挤物的相互作用对高分子的扩散性质有明显影响。高分子在拥挤环境中不仅扩散变慢,而且扩散过程通常表现出反常性质---亚扩散,即质心的均方位移随时间非线性增长。类似的现象也在细胞中观察到,具有普遍性。计算机模拟研究了高分子在纳米颗粒的拥挤空间中亚扩散的规律和物理原因。我们发现高分子具有复杂的构型,高分子在扩散的同时其构象也发生变化,这导致高分子在纳米颗粒上的吸附时间趋于无穷,从而引起高分子在无序拥挤空间中的亚扩散。
其他文献
  肌动蛋白(G-actin)是动物细胞中含量最丰富的蛋白,它们在细胞内可以自组装形成们双螺旋状的微丝(F-actin)。肌动蛋白及微丝与系列细胞功能有密切关系,包括肌肉收缩、支持细
  pH表征溶液的酸碱度,是自然界中许多生物化学过程的调控因子,例如酶的催化反应,细胞离子通道的开关,蛋白质折叠和聚集以及脂质分子的自组装等.然而,传统的分子动力学模拟
  将共轭聚合物和氧化石墨烯(GO)进行优势互补形成复合荧光探针将大大提高荧光探针与生物分子的相互作用及信息表达。而且,在利用非共价方式构建复合荧光探针的过程中,GO
  软物质体系因其具有较低的弹性模量,在外力载荷作用下往往表现出与传统硬质材料不同的力学行为,如大尺度形变、非线性形变的。其中,软物质体系及柔性界面上的裂纹扩展现象也
  纺锤体是完成细胞有丝分裂的主要亚细胞结构。但是,到目前为止,细胞如何检测和控制纺锤体的大小、位置、取向及运动仍然是一个悬而未决的问题。通过考虑微管聚合所产生的推
  颗粒物质是由大量宏观尺寸的粒子汇聚成的离散体系,是玻璃研究的模型体系。我们介绍过去几年中我们使用X光CT技术研究颗粒体系静态结构及动力学对于玻璃化转变的理解。
会议
  在自然界中生物材料展现出丰富的力学特性,如血管的高延展性、肌肉的高弹性、蜘蛛丝的高韧性等等。组成这些材料的弹性蛋白是承受力的主要结构单元,其力学性质决定了整体材
  本文提出了一个耦合不可压缩Navier-Stokes 流、热对流扩散以及达西渗流的人眼房水晶格玻尔兹曼动力学模型。在模型中,不可压缩Navier-Stokes 方程与热对流扩散方程使用Bo
会议
  In the presentation,I will show some recent experimental progress on the modulation and control of DNA charge by single molecular techniques.It has been sho
会议
  Using video microscopy and particle tracking techniques in dense packings of polygons,we have studied the structure-dynamics relationship in a near-equilibr
会议