超声芬顿氧化结合高热乙醇提取从汽爆残渣中制备高纯度纤维素

来源 :2015中国化工学会学术年会 | 被引量 : 0次 | 上传用户:blue_violet
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纤维素(cellulose)是一种自然界储量最丰富的可再生的、可生物降解的天然高分子聚合物.目前纤维素已被广泛应用,以分离纯化的纤维素为原料,可以制备酯类衍生物和醚类衍生物,可用于石油钻井,食品,陶瓷釉料,日化等.基于纯化的纤维素有如此广泛的用途,探寻一种提纯纤维素的清洁的利于工业化发展的方法尤为重要.纤维素是植物细胞壁的主要结构成分,通常与半纤维素、木质素结合在一起,因此,想要提纯纤维素,就需要将半纤维素,木质素去除.本文中以玉米芯为原料,通过微酸蒸汽爆破(1wt %H2SO4,1.0MPa,10min)预处理,将玉米芯中半纤维素清洁高效地转化为高附加值得D-木糖,通过蒸馏水重复冲洗可使半纤维素的去除率达到将近98 %.超声芬顿反应可使木质素氧化,降低木质素的分子量,探寻最优的超声芬顿反应条件,将水洗过的蒸汽爆破物料在优化好的最适超声芬顿反应条件(FeSO40.025M,H2O25M,25℃,120min)下进行氧化处理,发现处理后的物料明显变得疏松,表明经处理后的物料中的木质素被超声芬顿反应氧化起到了一定的作用.经超声芬顿处理后的物料通过高热下乙醇水溶液处理后(80wt %,160℃,120min),发现木质素的去除率达到将近94 %,达到了很好的纯化纤维素的目的,可为以后的工业化应用提供参考.
其他文献
我国是一个农业大国,每年可生成7亿多吨秸秆,但是却有30 %以上秸秆放置在田间.由于没有切实可行的收集、处理及利用技术,大量秸秆露天焚烧,导致了严重的空气污染和资源浪费.传统农用地膜的大量使用造成了一系列的环境污染问题,农用地膜残留已然已经成为影响农业环境、破坏土壤结构、危害作物正常生长发育并造成农作物减产的重要因素.
氢气作为二次能源以其清洁无污染、高效、可储存和运输等优点,被视为最为理想的能源载体.与传统化石燃料制氢相比,电催化分解水制氢是可再生及环境友好的制备方法,具有重要的工业应用前景.开发高效的可替代Pt的价格低廉的非贵金属析氢电催化剂是当前氢能源领域的研究热点.
对于在搅拌槽中进行的复杂快速竞争反应,反应物在分子尺度上混合的均匀程度会严重影响主产物的收率.众多研究表明,微观混合的效果与局部能量耗散速率有关.在搅拌槽内,桨叶排出区能量耗散速率最大,因此在桨叶附近进料可以使反应物快速充分混合.相比于液面附近进料,桨区进料可以显著减少副产物的生成.
金纳米粒子(AuNP)具有独特的表面等离子共振的光学特性,即AuNP表面受到入射光电磁波影响而产生电子云共振,并且在可见光区域出现特有的表面等离子共振吸收.这种等离子共振吸收对金纳米粒子的粒径、形貌、分散状态以及金纳米粒子所处微环境(如盐度、pH等)等因素十分敏感,表呈现出表面等离子共振吸收峰波长和吸光度的变化.
由一维(1D)或二维(2D)纳米结构单元组装而成的三维(3D)多级结构材料因其丰富孔结构、高比表面积及优异机械性能等独特优点而广泛应用于催化、储能、传感器以及水处理等领域.碱土金属硼酸盐纳米材料因结构组成多变、性能优异在众多领域表现出较高应用价值,其中以硼酸盐为基质的荧光材料则因其制备工艺简单、成本低、荧光强度高、机械性能优良而受到研究者的青睐.
合成生物学就是通过人工设计和构建自然界中不存在的生物系统来解决能源、材料、健康和环境等问题.合成生物学一词在2000年以后被广泛在学术期刊和互联网上使用,在合成代谢网络、生物基因组的合成、简化和重构以及遗传/基因线路的设计和构建、细胞群体系统及多细胞系统研究等方面也进行了深入的研究和探索.
In consideration of the upcoming environmental crisis,such as the growing global climate warming and air pollution,originating from emission of a great amount of acidic gases,efficient and green techn
2-卤代酸脱卤酶是催化2-卤代酸脱卤水解产生相应的2-羟基羧酸化合物的一类酶.该类酶不仅可用于环境中含卤化合物的的降解,因其较好的立体选择性且水解过程中无需添加还原力,故在生物催化转化领域中有重要应用价值.
发酵液是多组分的混合物,其中不仅包含了大分子量物质,如核酸、蛋白质等,还包含了一些低分子量物质,如氨基酸、有机酸和碱,因此,纤维素酶发酵液除杂过程就成为从中提取纤维素酶不可或缺的一步.传统的絮凝、离心、板框过滤等处理方法存在易发生相变、占地面积大以及产品纯度不高等问题.膜分离技术作为一种新型的分离技术以其成本低,操作简单,无相变等优点在生物质分离领域备受青睐.
离子液体具有许多独特的物理化学性质,如几乎不挥发、熔点低、溶解性好、热稳定性好、结构和功能可设计性等,被认为是一类特殊的功能材料和介质,并被广泛应用于化学、化工、材料、生物、能源、环境等众多领域,它已成为世界各国科研和企业界关注的热点.但是,离子液体粘度较高,通常要比常见有机溶剂高1~3个数量级,高粘度是阻碍离子液体获得大规模工业化应用的瓶颈之一,如何有效降低其粘度是离子液体应用过程中亟待解决的关