【摘 要】
:
The diffusion and stochastic resonance (SR) driven by bounded noise in the coupled memory-damping system are studied.The explicit expressions of the responses second-order moments are derived by means
【机 构】
:
Department of Applied Mathematics,Northwestern Polytechnical University,Xi'an 710072,China
论文部分内容阅读
The diffusion and stochastic resonance (SR) driven by bounded noise in the coupled memory-damping system are studied.The explicit expressions of the responses second-order moments are derived by means of the Laplace transform.Then,based on the mean square displacement (MSD) and it is stationary value,some novel results are obtained.
其他文献
利用动物实验,确定外部激励对大脑神经网络有哪些影响.结果证明,激励仅仅整体性地激活了网络的活动,其能量分布状态与突触可塑性不直接相关.海马CA1-mPFC的神经振荡,在theta节律的单向耦合可能参与了神经网络突触可塑性的调节.
研究了包含有短簇放电模式和长簇放电模式的混合神经元网络的时空模式和节律动力学行为.引入宽度因子这个特征量作为刻画单个神经元节律特性的指标,将神经元的节律模式划分为长簇放电和短簇放电两种模式,然后通过计算网络的平均宽度因子来衡量网络节律动力学行为的变化.
针对神经信息流分析的主流算法,即gPDC和排列熵算法在计算信息流过程中各自的特点,比较这两种算法在神经系统实验数据分析中的应用.利用NMM模型建立一个由2个神经元核团组成的神经予系统,即仿真的神经通路.通过调节模型参数,从而改变此通路的连接模式和连接强度,仿真出不同状态的神经元群活动信号.通过对比gPDC与排列熵对连接强度的估计,比较两个算法在分析神经信息流各项指标时的优劣.
利用最小的phamtom簇放电模型,研究两个电耦合胰腺β细胞的具有簇同步的组合簇放电,其膜电位表现出一个长簇和几个短簇组成的放电簇集和两边振幅较大中间振幅较小的阈下振荡的静息态的相互转迁.
针对工程结构有限元分析中的时域载荷识别问题,基于杜哈梅积分的离散化,推导了时域范围内载荷与响应之间的传递关系,提出了一种时域载荷识别的数值算法,并采用最速下降法对求解过程中的不适定性进行了处理.典型结构的数值仿真说明了该方法的正确性和有效性,便于工程应用.
The response and stability of fractional oscillator subjected to external and parametric Gaussian white noise excitations are studied.First,the original system is replaced by an equivalent integral-or
A time delayed optimal control strategy for strongly non-linear systems under wide-band random excitation with actuator saturation is proposed based on the stochastic averaging method and the stochast
The asymptotic Lyapunov stability with probability one of n-degree-of-freedom (n-DOF) quasi integrable and nonresonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Po
考虑了一个具有单面碰撞约束的单自由度碰撞振动系统,建立了系统的Poincaré映射,根据映射不动点的分岔理论,系统的周期运动对应于Poincaré映射的不动点.使用OGY控制方法对系统混沌进行控制.利用混沌对微小扰动的敏感性,通过对系统参数的微小摄动将混沌控制到期望的轨道.通过大量数值模拟分析混沌控制的特性和可实施性.
In this work,the BKP equation in the Hirota bilinear form is studied.The Wronskian technique and Grammian derivative formulae are applied to construct Wronskian and Grammian solutions of this equation