光响应TiO2纳米通道

来源 :中国化学会第29届学术年会 | 被引量 : 0次 | 上传用户:lwk2293366
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  生物离子通道由镶嵌在细胞膜上的特殊蛋白构成,其独特的非对称结构能够实现对特定离子或分子的定向输运。通道上特殊的蛋白能够对外界刺激产生智能响应,赋予通道开关功能。模拟生物离子通道的结构与功能来构筑人工纳米通道体系,实现对离子或分子在纳米通道中的响应性定向输运,将为构筑新型的纳流能量转换器、纳流离子整流器以及生物传感器奠定理论基础。本论文制备了一种基于TiO2的人工纳米通道[1-3]。图1给出了具体的制备过程,包括(1)通过电化学阳极氧化法制备两侧孔径非对称的TiO2纳米管;(2)利用十八烷基三甲氧基硅烷(OTS)对其进行表面修饰;(3)利用TiO2的紫外光催化活性将OTS分解从而在纳米通道表面引入羧基基团。当TiO2纳米通道的小孔端直径与电解质溶液的德拜长度接近时,纳米通道表现出离子整流性质。化学修饰的非对称TiO2纳米通道同时表现出光响应的门控效应和电响应的离子定向输运,其在传感、分离以及纳流二极管领域表现出潜在的应用价值。
其他文献
超级电容器由于具有大的功率密度、长的循环稳定性、快的充放电能力等优点,作为储能装备有很大的市场潜力。而电极材料是决定超级电容器性能的重要因素之一,高度有序的介孔碳材料由于具有有序的中构造、高的比表面积、均匀和可调的孔结构、良好的导电性和优异的化学稳定性等特性,这些独特的化学和物理特性是其作为超级电容器最理想的电极材料。到目前为止,已经吸引了广大科研工作者巨大的兴趣和高度的重视。为了提高碳材料的电容
  将羟基引入到BODIPY的3-位或者5-位,通过互变异构产生了以酮式结构存在的产物BDPONa,其具有特殊的结构和光谱特性.BODIPY骨架呈负电性,钠离子作为抗衡离子.单晶结构显示
  超氧阴离子,作为一种活性氧参与很多重要的生物过程.以花菁、荧光素为母体超氧阴离子的荧光分子探针存在光稳定性差、合成烦琐以及自身易氧化等缺点1.我们通过简单的两步
  OH-PBDEs是一类新兴污染物,自04年以来人们已在海绵、藻类、鱼、鸟、雨水及河水等多种环境介质中广泛检测出[1,2],与PBDEs,PCBs不同,OH-PBDEs从未大规模工业生产,因此其
会议
  膜材料是近代光电和通讯技术的重要基础材料之一。苯并噁嗪、吩噻嗪、噁嗪等几类化合物已被成功合成,并测得它们在溶液中均具有非常强的三阶非线性光学反饱和吸收和折射
会议
  三重态光敏剂在光催化、光动力治疗以及三重态湮灭上转换等领域有着重要的应用[1]。传统的三重态光敏剂一般只含单一的吸光基团,比如卟啉类化合物、孟加拉玫瑰红(Rose Ba
  本文将红光量子点与层状材料水滑石(LDHs)作为构筑基元,通过层层自组装的方法得到超薄膜,研究了其作为铜离子传感器件的优异性质.所制备的薄膜材料均匀致密、结构有序,该荧
  俘精酰亚胺光致变色化合物具有良好的抗疲劳性和热稳定性,通过酰亚胺N-取代基的不同可以引入不同的基团,引入活性羟基官能团为生成具有光致变色性能的活性染料,提供原料
  近年来研究表明,光动力治疗(PDT)在抗菌、抗肿瘤方面效果显著[1]。酞菁作为第二代光敏剂具有很强的可修饰性,通过改变中心金属离子和苯环上的取代基可以大大改善溶解性及其
会议
  传统的磷光过渡金属配合物的可见光吸收能力很弱。[1]具有近红外吸收能力的过渡金属配合物将适于生物荧光成像,但此类化合物很少见报道。[2],[3]为此,本文合成了含苯乙烯基B