两性离子纳滤膜

来源 :第九届全国膜与膜过程学术报告会 | 被引量 : 0次 | 上传用户:mfklyga
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  纳滤作为一种新型、节能、环保的膜分离技术,在海水、苦咸水淡化,污水处理和资源回收等方面扮演着越来越重要的角色.使用过程中膜污染是制约纳滤膜广泛应用的关键问题.两性离子基团整体呈电中性,且具有强结合水能力,己被用于提高膜的耐污染性.如何在膜表面简便而有效的引入两性离子,提高膜的耐污染性能和分离性能,成为该领域的研究热点.近年来,课题组从两性离子结构和加工方法出发,设计与制备了系列两性离子纳滤膜.1)首次合成可界面聚合的两性离子二胺单体N-氨乙基哌嗪丙磺酸内盐(AEPPS)与TMC进行界面聚合,获得了超亲水、耐细菌粘附、高渗透选择性的纳滤膜.2)利用自由基共聚法,制备了N,N-二甲基N-(2-甲基丙烯酰氧乙基)N-(3-磺丙基)铵(DMAPS)和丙烯酸-2-羟乙酯(HEA)共聚物P(DMAPS-co-HEA),通过溶液涂敷和化学交联,获得有机物与盐(一价、二价)高效分离的纳滤膜.3)调控DMAPS的含量,获得含有两性离子基团可参与界面聚合反应的有机纳米粒子,以其为填充材料,制备聚酰胺混合基质纳滤膜,获得具有高渗透性和耐污染性的纳滤膜.4)在聚酰胺膜表面进行两性离子化,获得耐污染纳滤膜.5)采用正电子湮灭技术对纳滤膜的微观结构进行分析,建立有机纳米粒子结构~膜结构~纳滤性能的内在关系,探明高水渗透和选择性机制.
其他文献
利用新纳米材料特性,通过微观结构调控宏观性能,是制备节能、高效的水盐分离膜的发展趋势之一.作为新型碳质纳米材料,石墨烯具有极大的宽厚比、超高的机械强度、化学稳定性和抗生物污染性等优势,是理想的分离膜材料.本文基于轻度还原的氧化石墨烯(rGO)和环境友好的胺分子壳聚糖,在聚砜超滤膜载体上组装制备具有层状结构的薄层石墨烯复合膜.通过调控氧化石墨烯的还原度和石墨烯-壳聚糖组装结构,实现对膜内石墨烯层间距
正渗透(FO)是一项新兴的膜分离技术,其低能耗、低污染的优点近年来吸引了众多科学家们的关注。聚酰胺薄膜复合膜由于其具有较高、高截盐率,和较广泛的适用条件,是最常采用的一种正向渗透膜。但传统的界面聚合法得到的聚酰胺薄膜复合膜其微观结构难以调控,具有高度各向异性,加上其高交联的芳香结构相对疏水,从而使得其水通量相对较低且具有一定的污染倾向。在本工作中,我们从基膜的化学改性、界面聚合单体的分子结构优化与
耐溶剂纳滤膜作为纳滤膜的重要分支之一,其分离对象为有机溶液,特别适合化学及制药行业中有机物的分离纯化。我们首次采用亲水性单胺Tris在铸膜液中接枝改性聚酰亚胺主链,再通过传统的相转化及二胺交联方法,制备了Tris改性的交联聚酰亚胺耐溶剂纳滤膜。同时采用邻苯二酚与聚乙烯亚胺作为底物,模拟多巴胺自聚,在聚丙烯腈基膜上共涂覆一层带正电的选择层,得到正电纳滤膜。研究表明制备的新型纳滤膜对常见无机盐、重金属
近两年,我们在低压大通量纳滤膜方面做了一些工作,也取得了一些研究进展.首先,在前期大通量超薄纤维素纳米纤维超滤膜的基础上[1],经界面聚合制备了交联PEI复合膜,用于低压纳滤膜过程.该膜渗透性好,对有机染料分子和无机盐均具有较高的截留率.如厚度约77 nm的膜,其平均孔径约0.45 nm,截留相对分子量为824 g mol-1、纯水通量为32.7 L m-2 h-1 bar-1.为了提高PEI-b
会议
传统聚酰胺(PA)复合膜存在通量提高截留下降的问题,为此提出用氧化石墨烯(GO)对其进行改性的方法.此前有将GO加入到界面聚合水相中进行改性的研究,但效果不佳,本实验将酰氯化GO (GO-COC1)加入到界面聚合有机相中,选取特定的分散剂,通过界面聚合的方式在基膜上表面形成一层含有片层GO的超薄PA层.其中GO-COC1是通过对GO进行酰氯化反应制备.分别通过界面聚合方法制备传统PA纳滤膜,水相添
纳滤可有效分离小分子和盐离子,越来越广泛的应用于废水处理、水纯化、脱盐、食品加工和生物分离等领域。纳滤分离机理主要包括分子排阻和电荷作用,纳滤膜的分离层被认为是由聚合物链段组成的三维网络,其分离行为主要取决于分离层的有效孔径和所带电荷。纳滤分离层的材料通常是亲水且在水溶液中易水合以及离子化,因此纳滤分离层的构象和离子化状态会受到周围环境的影响,尤其是pH和离子强度。纳滤作为一种典型的压力驱动膜过程
为提高聚哌嗪酰胺复合纳滤膜的渗透通量和抗污染性能,选择三乙醇胺(TEOA)、二乙醇胺(DEA)和丙三醇(GLy)作为改性单体,通过酯化或酰胺化接枝反应对PIP/TMC初生态纳滤膜表面进行功能化改性,探究不同改性工艺对复合膜结构和分离性能的影响规律.研究结果表明:在25℃、0.5 MPa的操作条件下,未改性膜PIP/TMC的纯水通量为80.6 I/(m2 h),改性膜PIP/TMC-TEOA、PIP
金属-有机骨架材料(Metal-Organic Frameworks,MOFs)由于具有巨大的比表面积、很高的空隙率,完全暴露在表面/孔道的金属离子可以提供100%的可利用率等优点而被广泛地应用于催化、气体吸附等领域,而基于MOF的纳滤膜研究较少.本文通过合成不同形貌的MOF,考察了MOF形貌、用量等对纳滤性能的影响.结果 表明:MOF形貌对纳滤膜渗透通量影响较大,对二价盐的截留较高,例如,对Mg
分别采用界面聚合和相转化的方法制备了无机-有机混合基质纳滤膜.(1)以聚砜超滤膜为基膜,以均苯三甲酰氯为油相单体和哌嗪为水相单体,采用界面聚合法嵌入改性后的多壁纳米碳管制备聚酰胺复合膜.采用傅立叶红外光谱(FTIR)、拉曼光谱(RAMAN)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)和静态接触角表征了复合膜的结构,结果表明基膜表面复合了一层聚哌嗪酰胺膜.继而对接枝聚甲基丙烯酸甲酯碳纳米管
目前反渗透膜技术研究较成熟的是聚酰胺复合膜。为了改善膜的分离性能,进一步降低产水成本,采用多种方法对膜的结构进行了改性。(1)以介孔二氧化硅纳米颗粒为纳米填充颗粒,通过单体间苯二胺(MPD)与均苯三甲酰氯(TMC)发生聚合,将纳米颗粒引入到聚酰胺的膜层中,在成膜过程中由于纳米颗粒的影响,使得膜结构发生变化,一方面聚酰胺的交联度下降,使膜具有更大的孔径和表面具有更多的极性基团,另一方面纳米颗粒的孔会