基于能量的分块方法研究生物柴油大分子脱氢反应

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:tj_tong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  生物柴油燃烧反应的理论研究得到了广泛的关注,然而庞大的计算量限制了传统的高精度量子化学计算方法在其中的应用。基于能量的分块方法(GEBF)是一种既能保证大分子能量计算准确度又能缩短计算时间的方法。它将大分子划分成小的碎片,再根据每个碎片临近的碎片结构将该碎片拼凑成完整的子体系分子,综合这些子体系分子的能量就可以得到整个分子的能量。
其他文献
  抑制碳氢燃料高温裂解过程产生的焦炭有利于保护飞行器的安全。本文通过可逆加成-断裂链转移(RAFT)聚合法合成了一种具有超支化结构的结焦抑制剂。
  航空燃料的低温燃烧直接影响其点火特性。由于实际航空燃料组分复杂,迫切需要对其重要组分均三甲苯和偏三甲苯的低温氧化动力学进行研究。本文利用射流搅拌反应器结合色谱
  对燃烧反应动力学的研究能够揭示燃烧反应过程中的本质规律,并进一步对于构建燃烧模型以及提升发动机基础燃烧研究水平有重要意义。在发动机相关的燃烧反应微观机制中,大分
  可调谐半导体激光吸收光谱(TDLAS)技术以精度高、非接触、环境适应性强等优势,已在大气环境监测、工业过程控制、燃烧流场诊断领域获得了广泛的应用。
  在加热激波管上首次测量了正壬烷/空气在宽温度范围的点火延迟时间.点火温度684-1448 K,点火压力2.0和15.0atm,当量比0.5,1.0和2.0.结果显示,在800-950 K温度区间点火延
  所谓的核心机理(Core mechanism),通常由小分子的燃烧反应机理通过模拟对比不同条件下其燃烧实验结果,逐步对机理的动力学参数和反应列表优化得到。目前燃料的燃烧核心机理
  这篇报告介绍我们发展的全量子化学分块方法的初步结果,作为反应力场处理和探索燃烧过程中基元反应机理。烃类化合物的燃烧将会在原子尺度上实现模拟。
  我们将随机取样高维模型映射(HDMR)方法应用于RRKM/ME计算的全局不确定性分析之中[1],得到如下结论:1.二阶及以上的灵敏性系数对于RRKM/ME方法得到的速率常数的不确定性影
  目前,有两类方法理论预测反应速率常数,其一是通过体系势能面关键点来推导动力学参数的统计力学方法,另一类是基于含时动力学计算的方法。
  熵作为体系的混乱度的一种衡量,我们可以简单地分为平动熵、转动熵和振动熵.实际处理体系的平动熵是采用理想气体方程,即考虑1atm大气压和22.4 l/mol下,不考虑分子本身大小.