近红外量子点能级调控及其光伏器件

来源 :第八届新型太阳能材料科学与技术学术研讨会 | 被引量 : 0次 | 上传用户:dada_2003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  PbS量子点具有低成本、可溶液法加工和宽的光谱调节范围(500~ 2500 nm)等优点备受人们关注,是近红外光伏器件的出色原材料.PbS量子点表面原始配体通常与卤素离子配体进行交换,使量子点获得优异的表面钝化和薄膜导电性.[1]然而,离子型配体由于缺乏自身偶极矩,其与量子点表面仅存在单一方向的界面偶极,导致卤素离子配体钝化的量子点具有深能带.特别是近红外(光吸收> 1100 nm)PbS量子点,其带隙的收缩导致更深的能带位置.因此,在近红外光伏器件中,深导带的卤素离子配体钝化的量子点与浅导带的电子传输层之间产生能带失配[2],阻碍光生载流子的提取和收集.本文在1170nm-PbS量子点配体交换过程中,将单一的PbI2配体,替换成PbI2/醋酸锌(ZA)混合配体,实现量子点能级调控.结果 表明,ZA使卤化物钝化的量子点薄膜能带上移(图1a),有效优化了电子传输层/量子点界面能带排列,提升了器件载流子提取效率,减少界面载流子复合.如图1b所示,标准太阳光谱下,器件光电转换效率(PCE)从6.0%提升至7.0%;~ 780 nm滤光后PCE从1.56%提升至1.96%;~1020 nm滤光后PCE从0.18%提升至0.25%.
其他文献
学位
非富勒烯(NF)电子受体的发展为提高有机太阳能电池的光电转换效率提供了广阔的机遇.通过将吸收范围扩展到更低的能量区域,可以提高有机太阳能电池的短路电流和光电转换效率.非富勒烯太阳能电池的一个十分有趣的前景在于,其在小的HOHO-HOMO(或LUMO-LUMO)能级差下,激子可以完成有效的解离.基于非富勒烯材料的特点,我们可以通过提高电荷转移态的能量,从而设计具有低辐射复合损失的非富勒烯有机太阳能电
学位
学位
染料敏化太阳能电池(DSSCs)的经典的金属铂(Pt)对电极容易被碱性多硫电解液腐蚀[1],并且作为贵金属的铂资源的珍稀性和昂贵的价格不利于未来量子点敏化太阳能电池(QDSSCs)大规模的工业化生产与推广普及,因此铂金属对电极不适用于QDSSCs,能否找到一种廉价易得且适配于多硫电解液的材料成为铂金属对电极的优质替代者成为该领域的一项研究热点.后研究发现铜片硫化处理后的CuS是Pt的优良替代品.采
量子点敏化太阳电池(QDSC)的研究近年来发展迅速,所报道的最高认证效率达到了14%以上,然而与其理论转换效率(44%)相比仍存在较大差距.限制效率提升的一个关键因素是量子点在TiO2膜电极表面负载量低.量子点的负载量不仅直接决定了电池的光捕获能力,同时对光阳极界面电荷复合及电荷收集效率有重要影响.将胶体量子点高密度沉积到TiO2基底充满挑战,文献所报道的最高量子点覆盖率仅为34%.量子点在TiO
学位
过渡金属Cu材料与其他物质组成复合材料,有利于促进量子点敏化太阳能电池(QDSSC)中S2-/Sn2-氧化还原电对的循环再生[1].本文以钴基金属有机框架ZIF-67为形状模板,通过水热-旋转沉降法在合成过程中引入CuO,在多面体结构中成功包覆CuO颗粒,再通过高温烧结,最终实现双过渡金属铜和钴颗粒在多面体含氮碳骨架中的均匀分布,合成了Cu/Co@NCF复合材料,如图1中的SEM图所示.Cu/Co
学位
学位