CO2加富对魁蚶稚贝氧化酶活性的影响

来源 :2015海峡两岸海洋生物多样性研讨会 | 被引量 : 0次 | 上传用户:qq382585541
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  大气CO2浓度升高造成海水pCO2升高、pH值降低和碳化学平衡改变,引起海洋酸化.作为钙化生物,贝类的生长和代谢过程可能会受到高CO2浓度条件的影响.酶活性是贝类响应环境变化的重要指标,但其对海水CO2浓度升高的响应的研究鲜有报道.本文采用CO2加富培养实验的方法,研究了魁蚶(Scapharca broughtonii)稚贝3种氧化酶(超氧化物歧化酶SOD、过氧化氢酶CAT和乙酰胆碱酯酶TChE)活性在高CO2浓度条件下的变化.对照组通入过滤自然空气(395 ppm CO2),实验组通入含1000 ppm CO2的过滤混合空气.培养水体pH和溶解性无机碳(DIC)以及稚贝壳长和酶活性等参数每2天测定一次,培养周期为14天.结果表明,CO2组培养水体中DIC浓度显著高于对照组,魁蚶稚贝初次潜沙时间(5.7 min)相比对照组(7.8 min)缩短,潜沙率(69.7%)相比对照组(61.3%)升高.实验开始时魁蚶稚贝壳长为17.20±0.03 mm,实验结束时CO2组魁蚶稚贝壳未出现明显生长(17.24±0.02 mm),壳长显著低于对照组(17.37±0.07 mm).CO2组魁蚶稚贝SOD活性在培养第2天和第4天时显著高于对照组(p<0.01),之后出现下降;两实验组魁蚶稚贝CAT活性在前4天均上升,之后CO2组魁蚶稚贝CAT活性基本不变,而对照组出现下降;两实验组魁蚶稚贝TChE活性在培养过程中无明显差异.高CO2浓度条件下魁蚶稚贝壳的生长受到影响,潜沙过程受到促进,三种氧化酶活性在培养过程中的变化趋势存在差异,未来海洋酸化可能会影响魁蚶的养殖.
其他文献
Increasing efforts are focused on microalgae as the sustainable sources of biofuels and industrial feedstock because many microalgae can accumulate large quantitiesof oils in the form of triacylglycer
Besides PPR (pentatricopeptide repeats) protein family, DAL proteins are another trans-factors for C-to-U RNA editing in plants which bridges between PPRs and the as yet unknown deaminase in RNA edito
In the study, exogenous abscisic acid (ABA) agent was used for treatment of young plants of SC 124 and Arg7 at 60 growth days under pot cultivated condition.
The recessive genic male sterility materials play an important role in hybrid breeding and rice seed production.
The CRISPR/Cas9 system is becoming an important genome editing tool for crop breeding.
会议
Cassava, a tropical food, feed and biofuel crop,has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition,which makes it highly suitable as a model
Source size, sink size and heading date (HD) are three important classes of traits that determine the productivity of rice.
Setaria has been widely considered as drought tolerant crop species that originated from north China.
Rice blast is one of the major diseases for rice production.Mining of excellent blast resistance genes and gene pyramiding are promising strategies to develop resistance variety.
To meet with the demands of high-yield and broaden adaptions from human, growth period structure had been largely changed during domestication and genetic improvement in soybean (Glycine max(L.) Merr.