精细化学品绿色合成过程中的催化技术

来源 :中国科协青年科学家论坛第二次活动绿色高新精细化工技术 | 被引量 : 0次 | 上传用户:doodoo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
全球化工发展的趋势是产品的更加精细化、系列化、专业化和功能化。世界大型化工公司纷纷将精细化工作为发展重点,并将其核心产业转向精细化工和高新材料。美国杜邦公司精细化学品业务占总销售额的60%;德国赫司特公司精细化工产值超过50%,并成为世界上最大的医药和农药生产公司;瑞士的汽巴-嘉基公司等专业精细化学品生产公司,其精细化工产值占到总产值的80%~90%。我国精细化学品合成产业近20年来也得到了快速的发展,但是与欧美等发达国家相比还普遍存在着技术贡献率低、环境破坏严重等问题。因此,精细化学品的绿色合成已经成为实现我国可持续发展的必然要求。其中,新催化剂与新催化技术的研究开发是发展精细化学品绿色合成技术的最有效途径之一。本文结合作者的研究工作,介绍固体酸催化剂、超临界催化加氢技术、纳米碳管负载贵金属催化剂和纳米过渡金属簇催化剂及其在精细化学品绿色合成过程中的潜在应用。
其他文献
用NOBF作为脱锂剂,通过化学反应定量脱去材料中的锂离子,合成出不同嵌锂量的LiNiMnCoO(0≤x≤1)系列材料.通过电感耦合等离子体质谱(ICP-MS)、光电子能谱(XPS)、X射线衍射(XRD)、循环伏安(CV)等方法表征手段发现,当锂脱出量超过总量的49﹪后,材料的结构、过渡金属的价态、电化学性能等方面都发生显著变化,这些变化中的不可逆因素影响了其首次充放过程的可逆性.结合TPD-MS以
采用自蔓延高温合成(SHS)技术研究了Zr-BO-Mg体系反应原料的不同粒度和掺量对反应产物的影响规律,并采用热压烧结方法烧结得到ZrB陶瓷.先用XRD对材料的相组成进行了分析;再通过化学分析测定精确的相组成;由SHS研究装置测量燃烧温度;由SEM观察材料的显微结构;用排水法测定烧结体的密度.研究结果表明:Zr粉粒径为50μm和Mg过量15﹪(摩尔分数)时的反应体系是最理想的SHS反应体系,SHS
用化学方法制备了AlO溶胶,采用溶胶-凝胶和机械搅拌的方法在TiH表面形成了AlO凝胶层.进行了发泡剂的释氢实验和两步法制备泡沫铝实验.结果表明:利用铝熔胶对发泡剂进行表面预处理可有效延缓其分解时间并改善其润湿性,涂覆后TiH可在溶体中均匀分布,从而实现两部制备工艺,获得孔隙结构比较均匀的泡沫铝样品.
采用氩弧熔炼后热处理方法制备了PtBi金属间化合物材料.采用循环伏安和旋转圆盘电极手段进行电化学性能测试.通过在0.5mol/L HSO+0.25mol/L CHOH溶液中对氧还原的起始电位和电流密度大小比较发现,与光滑铂电极相比,PtBi金属间化合物具有良好的氧还原催化性能和抗甲醇中毒性能.从结构方面分析了PtBi具有抗甲醇中毒性能的原因,认为是PtBi-中大的Pt-Pt间距不利于甲醇的吸附解离
在12L聚合釜内,原位合成了PET/纳米SiO复合材料,实现了纳米SiO在聚对苯二甲酸乙二酯(PET)基体中均匀地分散.借助于DSC、PLM等仪器,研究了纳米SiO粒子对PET结晶过程的影响及其在PET结晶过程中的作用.结果表明,纳米SiO粒子使PET结晶更加完善;起到异相结晶成核的作用,降低了结晶成核界面自由能,从而大大加快了PET的结晶速度.
利用外加磁场的MTG法对LaSrMnO体系的磁性与磁弛豫进行了研究.结果发现:在居里温度附近温度场和外加磁场的共同作用导致顺磁-铁磁两相消长与竞争现象.随外加磁场增强,两相共存温度区增大,铁磁-顺磁转变时间更长.
对Fe替代Co对LaCoNi化合物的晶体结构和电化学性能的影响进行了研究.实验发现:除了少量的1:5型杂质相外,合金主要由LaCo型化合物组成.电化学测试结果表明:与LaCoNi(0≤x≤2)化合物类似,随温度增加LaCoNi(0≤x≤3)化合物的电化学容量增加;与LaCoNi化合物相比较,当x≤2时,Fe替代Co使化合物的电化学容量增加,特别是当x=2时,其室温电化学容量和循环寿命有了明显的改善
通过固相反应法合成了用于高温下可直接吸收CO的锆酸锂材料,并对其进行了Mg元素的掺杂修饰,形成复合金属氧化物LiMgZrO(0.002≤x≤0.09);使用热重(TG)分析仪对锆酸锂材料吸收CO的性能进行了表征.结果表明:当Mg元素的添加量x=0.02时,合成的锆酸锂材料具有较快的吸收速度和较好的吸收容量,在500℃下,20﹪CO(80﹪空气)的气氛中保持3h,其吸收量可达(25±0.6﹪)(质量
采用挤压铸造工艺制备了氧化铝陶瓷颗粒增强5210铝合金基复合材料,研究了复合材料的界面反应及陶瓷颗粒含量对复合材料性能的影响.结果表明:铝合金与陶瓷颗粒表面的粘结剂发生了反应,并提高了复合材料的界面结合强度;当陶瓷颗粒体积含量为60﹪时,复合材料的抗弯强度达到最大值285.0MPa.对断口的扫描电镜分析发现;铝合金的撕裂和陶瓷颗粒断裂是复合材料失效的主要机制,实验中没有观察到界面解离现象.
离子液体使生物催化反应工程化成为可能,在许多反应中,离子液体不仅可以代替传统溶剂,而且改进了反应体系,提高了反应效率。与传统溶剂不同,离子液体无蒸气压,能溶解许多化合物,并且可与许多溶剂形成两相反应体系,研究结果表明,离子液体对生物催化反应有益,可以提高酶的活性、对映体选择性和稳定性。