Synergetic Effects of Electrochemical Oxidation of Spiro-OMeTAD and Li+ Ions Migration in Improving

来源 :第八届新型太阳能材料科学与技术学术研讨会 | 被引量 : 0次 | 上传用户:www0908
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  N-i-p Type perovskite solar cell generally requires air oxidation of Spiro-OMeTAD layer to achieve high power conversion efficiency (PCE).However,the detailed oxidation mechanism is still not fully understood.In this paper,oxidation of Spiro-OMeTAD was demonstrated via a non-contact electrochemical way using UV-Vis absorption,laser beam induced current (LBIC) imaging and secondary ion mass spectrometry (SIMS) profiling of the Spiro-OMeTAD films.At the cathode,oxygen reduces to form OH-with the help of H2O,while the anodic reaction is oxidation of Spiro-OMeTAD to form Spiro-OMeTAD+.Diffusion of Li+ towards surface of Ag electrode completes the electrochemical cycle and increases conductivity of hole-transporting layer.SIMS analyses on completed devices demonstrate that the oxidation of Spiro-OMeTAD also leads to migration of Li+ through the perovskite layer into SnO2,which supposedly leads to an increase of the built-in voltage.We verify those results by incorporation of the experimentally measured Li+ concentration into a numerical drift-diffusion simulation,to replicate solar cell J-V-curves.This work provides a new insight into the oxidation of Spiro-OMeTAD in the perovskite solar cells,and demonstrates that Li+ migration is involved in the oxidation of Spiro-OMeTAD.
其他文献
会议
金属卤化物钙钛矿材料在太阳能电池和LED领域都非常有应用前景.短短几年时间,钙钛矿LED的EQE就已经超过了20%,接近于商用OLED的水平.但是目前高效率的钙钛矿LED都是基于旋涂法制备而成的,器件面积都很小(mm2量级),无法满足大面积商业照明的需求.刮涂法是一种制备大面积薄膜的方法,但是刮涂法制备钙钛矿薄膜的结晶过程不易控制.本次报告中,我们将介绍一种大面积制备高质量钙钛矿纳米晶薄膜的方法.
会议
Perovskite solar cells (PSCs) developed great potential to make photovoltaic power generation systems more cost effective ascribed to the high-power conversion efficiency,low material cost,and easy fa
基于碳电极的CsPbI2Br无机钙钛矿太阳能电池因其低成本和高效率而备受关注.然而,通过溶液法制备的钙钛矿通常具有一些缺陷,导致较差的电荷提取速率.本项工作使用四正丁基碘化铵(TBAI)钝化了CsPbI2Br钙钛矿表面,消除了膜表面的阳离子空位并与铅离子产生配位作用,最终降低了钙钛矿表面的电荷缺陷密度.我们首先通过在空气中使用梯度退火和抗溶剂乙酸乙酯,获得了具有良好结晶度和较少针孔的CsPbI2B
CsPbI3无机钙钛矿相比有机-无机复合钙钛矿具有更高的光热稳定性.采用二甲基铵铅碘(DMAPbI3)作为前驱体可有效降低CsPbI3薄膜的相转变温度,实现低温溶液法制备,因此获得了广泛的关注.然而,基于DMAPbI3前驱体一步旋涂法制备的CsPbI3薄膜往往存在较多的裂缝和针孔,不利于制备高性能的太阳能电池.为此,我们采用反溶剂工程来调控CsPbI3薄膜的结晶动力学过程,改善薄膜表面形貌.本工作
铯基钙钛矿材料CsPbX3 (X=Cl,Br,I)具有优异的热稳定性.典型的黑色CsPbI3(γ相)具有1.73 eV的光学带隙,适合作为串联太阳电池的宽禁带吸光层.本文介绍一种低温浸出法制备CsPbI3.采用过量CsI与DMAI为添加剂,形成初始薄膜,初始薄膜浸入IPA中发生离子交换反应形成钙钛矿相CsPbI3.结果 表明,过量CsI和DMAI添加剂有利于控制初始薄膜的相结构,DMAI的加入使初
在溶液法制备钙钛矿薄膜前及钙钛矿薄膜中都存在这一系列的化学反应,对这些化学反应的理解将有助于我们制备更高质量的钙钛薄膜、提高器件效率和寿命。我们详细考察了钙钛矿薄膜在胺类气体中可能发生的系列化学反应,这些化学反应包括:去质子化反应、加成消除反应和水解反应等。
目前钙钛矿单结电池效率已达到25.5%,效率与晶硅电池相当,但成本预期只有晶硅电池的1/5.随着钙钛矿太阳能电池组件的光电转换效率不断提升以及规模化制备工艺的不断完善,电池的寿命成为制约其发展的关键问题.然而提升器件稳定性的基础是明确影响其稳定性的物理和化学本质,这方面仍缺乏较为系统的研究.本文从钙钛矿层的稳定性为切入点,通过自主搭建的简易装置,考察了MAPbI3薄膜的热稳定性:在100℃热台持续
The strategy of Lewis base modification has been shown to be rather effective in fabricating high-quality perovskite crystals,however,the underlying mechanisms remain controversial owing to the lack o