纳米组合化学法系统性研究纳米-生物相互作用

来源 :NCEC2019第十届全国环境化学大会 | 被引量 : 0次 | 上传用户:www_acafa_com
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  纳米材料对细胞干扰的因素包括核材料、尺寸、形状及表面性质。研究这些性质的共同影响是系统性研究纳米-生物作用的难点和关键点。为了系统性研究纳米颗粒的不同物理化学性质在纳米-生物作用中影响,我们设计合成了包含36 种不同核材料(Pt、Au、Pd),不同尺寸(5 和25 nm)和不同表面化学(6 种以上)的纳米组合化学库(图1),并系统研究了纳米颗粒的细胞摄入、细胞毒性和氧化应激水平与物理化学性质的关系。
其他文献
随着我国城市化的快速发展,土壤环境面临着较高的生态环境风险。本文以我国南方某典型城市化区域土壤环境作为研究对象,共采集表层(0~20cm)土壤样品106 份,亚表层(20~40cm)96 份并测定其重金属含量,通过空间插值探讨其空间分布特征。
由于土壤组分和性质存在较大空间异质性,如何科学评估和预测土壤中微量元素的风险一直是研究的热点。大量研究表明,重金属在土壤固/液相间的分配是控制其迁移能力和生物可利用性的关键因素,传统的基于多元回归等经验式模型在预测土壤中金属溶解性和生物有效性时尽管简单有效,但常常无法扩展至不同土壤类型及环境条件,限制了其应用范围。
课题研究了一种价廉、有效、稳定、绿色且对环境友好、易与常规农业生产结合起来的新型土壤钝化剂——腐植酸-木醋液基修复材料(HA/WV)及其制备方法,研究了其对重金属铅、镍的吸附固化性能[1,2]。运用气相色谱/质谱联用仪(GC-MS)、傅里叶变换红外光谱仪(FTIR)、紫外光谱仪(UV-Vis)对其结构进行了表征。
稻田的土水界面是重金属在表层水-土壤间迁移转化的关键微区,并调控着重金属的土水交换。在这个微界面上存在着剧烈的氧化还原梯度和旺盛的微生物活动,往往伴随着重金属元素的形态变化和可利用性的变化。
环境界面是污染物释放及固定的重要区域。典型环境界面(如沉积物-水界面、植物根系-土壤界面等)由于根系分泌物、含氧量突变等因素的影响,其物理化学条件(如pH、氧化还原条件等)及微生物活性存在明显的异质性,因此造成污染物在环境界面的快速释放/固定。
气态前体污染物向颗粒物转化以及细颗粒物PM2.5 浓度增加是我国近年来重污染天气形成的关键因素,也是健康效应的重要贡献者[1,2].
汞是可以气态单质存在的全球性污染物,联合国环境规划署在2013年签署了限制汞排放的《水俣公约》,并于2017年8月正式实施,该公约签署使得汞污染问题成为目前最受关注的环境问题之一。
随着纳米科技的不断发展,大量的人造纳米颗粒被广泛地应用。纳米二氧化铈颗粒(Ceria NPs)具有独特的理化性质,在制造业、能源、医疗、环保等领域有着巨大的应用前景。
基因组的损伤是日常生活中的自然现象。生物体的基因组不断的暴露在有毒化学品、内源性活性氧(ROS)下均可能会引起细胞中DNA的链断裂和碱基修饰,若不能及时被修复则很有可能引起突变、染色体畸变、细胞凋亡或坏死。
Sorption and transformation of pollutants at the solid-water interface are fundamental questions in environmental and geological sciences.