窄带隙n-型有机半导体的设计合成与研究

来源 :2015年全国高分子学术论文报告会 | 被引量 : 0次 | 上传用户:hljxkbsyly
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  窄带隙芳香共轭分子和聚合物的设计合成具有重要的研究价值。通过窄带隙活性材料的开发和利用来改善光子利用率是进一步提高聚合物太阳能电池光电转化效率的重要方向。窄带隙共轭分子的其它应用领域还包括近红外光学材料、近红外电致变色开关、可见光透明有机半导体等。
其他文献
  导电聚吡咯(PPy)纳米微球具有较大的比表面和良好的电化学性质,并可进一步负载催化剂、荧光物质、生物活性物质等而应用于催化、荧光标记、生物检测等领域。
  光子晶体具有特殊的周期性结构,能够调控光的传播和发射,又被称为“光学半导体”,被认为是未来光子工业的材料基础,其研究和应用受到广泛关注,在光学器件、光导纤维通讯和传感
  有机半导体材料的有序化已经被证明是获得高性能的有效而常用途径。无论是载流子迁移率还是激子的扩散性质都强烈依赖于分子排列的有序性,而分子排列最为有序的单晶成为理
  目前的有机光伏电池器件广泛采用低带隙给体材料与富勒烯类受体材料形成体相异质结的薄膜结构。过去的二十年,给体材料研究取得了显著进展。然而受体材料基本上还是集中在
  随着有机太阳电池与钙钛矿太阳电池的光电转换效率相继取得突破性进展,如何实现高效太阳电池的大面积加工成为新的研究热点,而目前广泛使用的作为电子传输层的共轭聚合物材
  在过去的几年里,高分子有机太阳能电池领域发展迅速,然而仍存在一些因素的制约。比如,高分子太阳能电池的活性层中的高分子和富勒烯只能从有限的材料中选择,使得目前最高的的
  催化剂转移缩聚反应和C-H活化缩聚反应是近年来发展起来的共轭高分子合成新方法,本文将介绍我们在这两方面的研究进展。
  聚合物太阳电池(PSC)因具有轻、薄、柔性、可大面积高速印刷的低成本潜力等独特优势,而受到国内外科学家和工程师的广泛关注与研究.PSC 的能量转换效率强烈依赖于活性层材