聚合物纳米复合材料粘弹性的分子动力学模拟研究

来源 :2014年大分子体系理论、模拟与计算研讨会 | 被引量 : 0次 | 上传用户:XM201314
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  采用分子动力学模拟,考察了碳纳米弹簧的力学可回复变形对聚合物粘弹性的影响。发现在均匀分散情况下,复合体系的滞后损失随纳米弹簧的弹性常数和界面结合(纳米弹簧与分子链)的增大而减小,分析其原因是纳米弹簧的可回复变形带动周围分子链一起运动而减小分子链间的内摩察。同时针对轮胎用橡胶纳米复合中出现的非线性行为(储能模量随应变幅度的增大而逐渐减小),施加周期性剪切场,发现纳米颗粒直接接触形成的聚集体或桥链(单根分子链同时吸附若干个纳米颗粒)的破坏直接导致该非线性行为,通过提高纳米颗粒分散或对纳米颗粒表面进行接枝改性均会降低该非线性行为。
其他文献
  水溶液中的偶极子与离子、胶体粒子以及及表面等带电组分之间的静电作用在电化学、生物学与材料科学等体系中发挥着重要的作用.疏水性高分子与溶剂分子的介电性质存在巨
  具有纯排斥相互作用的胶体、颗粒物质、泡沫等体系在堆积密度增大时会由无刚性的Unjammed体系转变为有刚性的Jammed非晶固体,零温状态下该Jamming转变对应的密度轴上的点
  近年来,高分子自组装已经向结构的多级化和制备的可控化发展,而结构的多级化研究尤受关注[1-5]。在前期研究中,我们发现将刚-柔嵌段共聚物与刚性均聚物共混可以制得诸如
  非线性Langevin 方程理论是研究玻璃化转变的微观理论之一.它已经被应用于研究胶体和各种聚合物的玻璃化动力学.这个理论的基础是建立在粒子或胶体体系上的.对具有链结构
  我们运用连续相高分子自洽场理论通过数值计算,研究了浸没在无外加盐的良溶剂中的一个球型聚电解质刷的刷子高度的标度关系和局限在刷子内的反离子的百分比,以及浸没在良溶
  嵌段共聚物能够自组装形成丰富的有序结构.在这些相结构中,球状相可被用来制备特征尺寸为5-100 nm的“介观晶体”.然而,诸如两嵌段共聚物等相对简单的嵌段共聚物只能形成
  超支化聚合物(Hyperbranched polymers,HBPs)是一类具有不规则三维树枝状结构的高度支化大分子.由于其独特的结构和物理化学性质,现已成为自组装领域研究的热点.研究表明
  双面神状粒子因具有两种不同的组成部分,其作为构筑单元在制备多功能纳米材料方面具有广阔的应用前景.通过嵌段共聚物在溶液状态下的自组装来获得双面神胶束是一种最普遍
  接枝共聚物是一种聚合物主链上通过共价键接枝化学结构不同的聚合物支链而构成的特殊聚合物,因其具有熔融粘度低、物理机械性能优良等特性,越来越受到人们的重视。然而分
  我们采用分子动力学的模拟方法研究了无定形边界条件下三维Kob-Anderson玻璃质液体的动力学及点对集关联长度。模拟中我们任意选取一个平衡构型,然后按不同的几何结构(球