混自旋(1/2,1)阻挫钻石链体系的磁学和热力学性质

来源 :第十九届全国凝聚态理论与统计物理学术会议 | 被引量 : 0次 | 上传用户:birentx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  低维量子自旋系统一真是凝聚态物理的研究热点,钻石链自旋模型作为其中的成员之一在过去几年受到了广泛关注[1]。尤其是具有钻石形拓扑结构的阻挫自旋链模型材料Cu3(CO3)2(OH)2的发现,其表现出地有趣磁行为引起了人们对该体系的深入研究[2,3]。本文在前人工作基础上,构建了具有伊辛-海森堡交替键的混自旋(1/2,1)阻挫钻石链系统,考虑竖直方向为S=1的海森堡自旋并带有单离子各向异性,水平节点处为μ=1/2的伊辛自旋。竖直方向的海森堡自旋间存在着XXZ双线性以及双二次交换作用,而它们与周围近邻水平节点的伊辛自旋为伊辛类交换作用,并采用传递矩阵法对体系进行了严格求解,着重讨论了基态自旋序,低温磁化行为以及热力学性质。计算结果表明:对应不同本质属性的基态相变,系统的低温磁化曲线在临界场附近表现的行为不同。双二次交换作用和单离子各向异性能够引起海森堡自旋内部的能量竞争使磁比热呈现出双峰结构。
其他文献
会议
会议
会议
会议
会议
Ge是传统的半导体电子材料,在电子器件领域被广泛使用.然而,其间接带隙的能带结构限制了它在光电一体化领域的应用.本项研究利用密度泛函理论计算探寻了掺杂将其转变成直接带隙能带结构的可能性.理论计算发现12.5%(摩尔比)的Sn掺杂能导致Ge的能带结构转变为直接带隙,同时带隙宽度也随之变小.理论分析表明,能带结构的改变可能是由于Sn原子较大的电负性引起了Ge原子s、p轨道电荷重新分布,进而导致导带底部
用基于玻尔兹曼方程的宏观近似,我们在理论上研究了自旋阀中由于输运导致的热产生。分析结果表明,磁性多层结构中的额外热产生表现出与巨磁阻效应类似的行为。在自旋阀中,由于自旋积累导致的额外热产生与自旋耦合界面电阻的焦耳热是相等的,经证明这是一个普适的结论。但是,在单独的各层中,热产生并不满足焦耳定律。更细节的研究表明,额外热产生是由于自旋扩散过程和自旋反转散射导致,在半无限层中,两种作用的贡献相等。另一
An asymmetric periodic device driven by both a high-frequency signal and a lowffequency signal is investigated.First,the phenomenon of multiple current reversals is observed by varying amplitude of th
The nanocrystalline (Na0.7K0.3)0.5Bi0.5TiO3 plates present room temperature ferromagnetism.The reduction of ferromagnetism for the (Na0.7K0.3)0.5Bi0.5TiO3 plate with subsequent long time and high temp
A quantum spin liquid state is a Mott insulator without any long-range magnetic order down to the lowest temperature.For the typical candidate material κ-(ET)2Cu2(CN)3,which is believed to be describe