自然纤维基底制备SERS试纸的研究

来源 :第十一届全国塑料光纤·聚合物光子学学术会议 | 被引量 : 0次 | 上传用户:a542886140
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,表面增强拉曼散射(SERS)作为一种超敏感的分子振动光谱技术,得到了广泛的应用.自1970年拉曼光谱被发现以来,SERS已应用于生物化学、日常科学等多种分析领域.但是因SERS基底的制备工艺复杂,目前多停留在实验室研究水平.本研究提出了一种利用自然衬底进行试纸化制备的新思路.以纸的天然纤维结构为模板,通过物理气相沉积制备一定厚度的银膜,纸纤维表面的固有褶皱和纳纤维结构产生的等离子体增强使其具有很好的SERS增强效果,由此制备了廉价、高效SERS试纸.该试纸兼具柔性和疏水性能,而且可以对探针分子起到浓缩的作用,进一步提高其灵敏度.该方法成本低、制备简单,制备的试纸易于保存、方便携带,可以大批量制备,具有广泛的应用前景.
其他文献
本文对1480nm波长激光泵浦下聚合物波导放大器在1550nm波长的增益特性进行了理论模拟和讨论.通过数值求解原子速率方程与光功率传输方程,分析了Er3+掺杂浓度、激发态吸收、合作上转换、信号光和泵浦光传输损耗、信号光和泵浦光功率、波导有效截面积及重叠积分因子对增益的影响.
表层裸露的聚合物光波导是传感芯片的基础,本文研究热压印法封装制备表面裸露的矩形聚合物光波导.首先在PMMA基片上采用湿法刻蚀制作SU-8芯层的矩形光波导;采用压印机,加热到包层的玻璃态转化温度,用热压印法将未达到玻璃态的聚合物芯层波导压入包层内,形成表面裸露的矩形波导;采用CO2激光器切割芯片端面,分析切割参数对端面粗糙度的影响.最后对器件进行抛光和测试,得到器件的红外输出光斑(波长1550nm)
利用LabVIEW编程,设计并完成了一种基于LabVIEW的平面光波导测试系统.将光波导器件测试中使用的四种主要仪器即可调谐激光器、双通道光功率计、信号发生器和示波器通过LabVIEW编程控制,并在此基础上,对制备的平面光波导热光开关器件的主要性能参数进行了测试.实际测试结果表明,该测试系统可以满足平面光波导器件如分束器、调制器、光开关等器件的程控测试.同时,研究开发的平面光波导器件多功能测试系统
本文设计并制作了一种基于聚合物光波导的Fabry-Perot(F-P)干涉型传感器件.在SiO2衬底上,采用聚甲基丙烯酸甲酯(PMMA)为波导两侧包层,SU-82005紫外负性光刻胶作为波导芯层,采用传统的半导体制备工艺完成了器件的制备.同时,用光学显微镜对聚合物光波导、微流控通道以及储液池的表面形貌进行了表征.通过向微流控通道内注入牛血蛋白溶液,并采用基于Laboratory Virtual I
本文利用有限差分法设计了波导型热光开关器件.聚甲基丙烯酸甲酯-甲基丙烯酸环氧丙酯(PMMA-GMA)作为波导的芯层与包层材料,采用非对称马赫-泽德尔干涉仪和多模干涉耦合器构建1×2光开关单元器件,并在此基础上构建了1×4结构低功耗热光开关.模拟结果表明,当调制温度为7.22K时,开关消光约为30dB,通道间串扰小于-30dB.
本文设计了一种氟化光敏型聚合物可调谐高阶布拉格波导光栅滤波器,利用紫外光写入技术,可直接实现波导芯片的制备.通过分别定义氟化光敏胶FSU8为芯层材料和聚甲基丙烯酸甲酯(PMMA)为包层材料,优化设计并详细分析了热光可调谐布拉格波导光栅的结构参数与滤波性能.通过利用Rsoft软件模拟了布拉格光栅的中心谐振波长随温度的变化关系,获得四种不同光栅反射率在99%以上,中心波长漂移量为0.1nm/K,且随温
基于铌酸锂波导的M-Z电光调制器是光纤通信系统的关键器件之一。因其具有传输损耗小、驱动电压低和调制速率高等特点,已被广泛应用于微波光子链路、分布式光纤传感系统与光开关交换矩阵。但由于铌酸锂晶体的光学性能会随着外界环境(如温度)的变化而发生变化,电光调制器的偏置点随之发生漂移,从而导致信号质量恶化,影响系统性能。为了减小调制器偏置点漂移,本文提出了一种基于数字PID控制算法的任意偏置点稳定控制方案(
在纳米材料研究领域,纳米晶体形貌调控及其功能化极大拓展了纳米材料的应用,在纳米材料合成过程中,聚合物对其形貌调控和功能化起着关键作用。近年来,树枝状银纳米结构引起了研究者的关注,这种结构具有比表面积大,以及不规则生长蔓延的层级结构的特点,这一结构特点赋予树枝状银纳米结构优异的SERS效应,在单分子的检测和痕量检测领域具有重要的应用价值。
加速度计是重要惯性传感器件之一,目前已广泛应用于导弹制导、飞机导航、人造卫星的姿态控制、刹车控制系统、大型电器设备的振动遥测以及石油勘探等领域。基于光波导的集成光学传感器件具有小型化、集成化、高灵敏度和抗电磁干扰等优点,已被认为是目前高性能传感器件的重要发展方向之一。本文利用低损耗聚合物材料制备了一种基于马赫—曾德尔干涉(MZI)结构的加速度传感芯片(如图2),并搭建信号测试系统实现了加速度信号的
会议
微流控芯片实验室[2]又称芯片实验室(lab-on-a-chip)或微流控芯片(microfluidic),是把化学和生物等领域中所涉及的样品制备、反应、分离、检测及细胞培养、分选、裂解等基本操作单元集成或基本集成到一块几平方厘米(甚至更小)的芯片上,由微通道形成网络,以可控流体贯穿整个系统,用以取代常规的化学和生物实验室的各种功能的一种技术平台。微流控芯片甚至可以完成几个大型实验室合作才能完成的
会议