固相微萃取技术在土壤有机氯农残检测中的应用

来源 :第六届全国环境化学学术大会 | 被引量 : 0次 | 上传用户:c472559561
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
土壤作为农业生态系统中物质与能量交换的载体,是人类赖以生存的物质基础。 20世纪 60 ~ 80年代,有机氯农药(Organochlorine Pesticides,OCPs)在我国被广泛应用于农业生产,造成了土壤的严重污染。OCPs 属于持久性有机污染物,具有致癌、致畸、致突变作用,对人体的健康能产生很大的危害。因此,注重土壤中有机氯农药残留的监测方法研究将有助于了解土壤的污染状况,更深入揭示农药在土壤中的迁移、动态转化,对指导农业生产和土壤改良具有重要意义[1]。
其他文献
环境污染是人类社会所急需解决的重大问题之一。其中光催化是解决环境污染最有效的方法之一,而高活性光催化剂是该研究的关键问题之一。本工作通过控制合成了高活性的磷酸铋新型非金属含氧酸盐光催化剂。通过水热反应、高温水解反应、表面杂化碳化氮等方法,对磷酸铋催化剂的结构、缺陷、晶相、尺寸、吸收带边进行调控。再结合光电化学、理论计算以及光谱学的表征手段,探讨了这些因素对磷酸铋光催化剂的光生电子和空穴分离率、界面
光催化剂催化性能受到晶型、晶粒大小、焙烧温度、金属离子负载、半导体材料复合等因素的影响。其中,光催化材料的微观形貌也是一个重要的影响因素。材料不同的微观形貌通过改变表面吸附量、吸附方式、光照路径等因素来提高光催化性能。人们一直致力于设计温和绿色的方法来合成尺寸可控(从微米到纳米级)以及具有特殊形貌和优异性能的新型功能材料。然而传统物理化学的制备方法在材料的结构控制和性能定向设计方面总是难尽人意。生
1995年,J.J.Carey等[1]首次将掺硼金刚石电极应用于废水处理,拓宽了掺硼金刚石电极的应用领域,同时使电化学氧化法应用于处理高浓度,难降解实际污水成为可能。在接下来的十多年间, 众多研究者再次证明掺硼金刚石电极在电氧化有机污染物的优越性。 Murugananthan[2]比较了Pt电极,玻碳电极,掺硼金刚石电极对雌二醇的降解速率,实验结果表明,对玻碳电极来说, 在电解时间120 分钟时,
废水综合生态毒性评价方法有多种,普遍可概括为两类,第一类是用平均毒性来表示废水的综合生态毒性,第二类则用一系列生物实验中得到的最大生物毒性值来表示废水的综合生态毒性,其它的综合生态毒性评价方法基本都由这两类方法改变得来。其中,在第一类方法基础上,结合考虑废水排放量的PEEP ( Potential Ecotoxic Effects Probe)方法已在美国、加拿大、日本、法国、哥伦比亚[1~3]等
孔雀石绿(MG)和结晶紫(CV)属于三甲苯烷类染料,在水产养殖中被广泛用作抗真菌和抗寄生虫剂。然而,随着其致癌、致突变和其他毒性效应的发现,此类化合物已被各国禁止使用[1]。但由于这类化合物价格低廉、抗菌效果好,在水产品养殖中会被非法添加,进而污染环境水体。因此有必要建立一种简单、可靠的分析方法来测定水体中的这两种污染物。
本文针对大气湿沉降氮的区域通量问题,通过2008年春夏季对临安青山湖区湿沉降中氮素化学形态的分析,揭示了大气氮湿沉降的时间分布特征,通过估算大气氮湿沉降的输入通量,来研究湿沉降对湖区水体富营养化的贡献。
全氟化合物(PFCs)是一类分子中的 C-H 键中氢原子全部被氟原子取代的化合物,具有不同于传统碳氢化合物的特性,被广泛用于金属电镀、洗印、半导体、产品涂层、包装材料等与生产和生活关系密切的产品中。全氟磺酸盐和全氟羧酸盐应用最为广泛,其中全氟辛烷(C8)产品占80%以上。近年来,全氟化合物对环境、生物和人类健康的影响日益受到人们关注,已成成一个全球热点问题。
饮用水的安全卫生是二十一世纪人类面临最富挑战性的问题之一。我国与世界上其它许多国家一样,也存在饮用水安全卫生问题。饮用水中,污染物主要以微污染物的形式存在,包括无机污染物和有机污染物, 浓度在ppm-ppb量级。其中,无机微污染物主要包括Pb(II), As(III), Hg(II), Cu(II), Cr(V) 等重金属离子和氟离子[1],只要微量浓度即产生毒性效应,且具有持续性和放大作用, 经
BiVO4早期作为一种不含有毒元素的黄色颜料以及具有优良的离子导电性和铁电性已备受关注。研究发现BiVO4具有三种晶型:四方晶系白钨矿型scheelite-tetragonal(s-t), 四方晶系硅酸锆型 zircon-tetragnol(z-t)和单斜晶系白钨矿型scheelitemonoclinic (s-m)。其中,单斜相(monoclinic)的 BiVO4的禁带宽度为2.4 eV,其吸
近年来,抗生素作为兽药和饲料添加剂被大量用于水产和畜牧养殖中。据估计,全球大约每年消耗10-20 万吨抗生素[1]。抗生素在动物体内并不能完全代谢,高达90%的抗生素会以原药形态随粪便和尿液直接排出体外,通过施用粪肥等方式进入到土壤环境中[2]。抗生素进入土壤后会改变土壤中微生物菌群的结构和功能,诱导产生抗性基因 [3],对人类健康产生巨大威胁。