【摘 要】
:
本文采用磁控溅射和光刻技术制备了1×1 μm2的TiN/HfO2/ITO器件,通过正负细丝形成(forming)电压的操作方式来研究其阻变性能。研究结果表明在两种操作模式下,导电细丝均在ITO端操作,且具有自限流特性。同时,文中比较了ITO和Pt两种电极下,存储器单元阻变性能的差别。结合电流-电压(I-V)拟合机制,我们推断自限流特性来源于ITO电极与氧化铪基阻变层之间形成的界面层。进一步的,我们
【机 构】
:
湖北大学物理与电子科学学院,湖北 武汉 430062 湖北大学物理与电子科学学院,湖北 武汉 43
【出 处】
:
2015中国功能新材料学术论坛暨第四届全国电磁材料及器件学术会议
论文部分内容阅读
本文采用磁控溅射和光刻技术制备了1×1 μm2的TiN/HfO2/ITO器件,通过正负细丝形成(forming)电压的操作方式来研究其阻变性能。研究结果表明在两种操作模式下,导电细丝均在ITO端操作,且具有自限流特性。同时,文中比较了ITO和Pt两种电极下,存储器单元阻变性能的差别。结合电流-电压(I-V)拟合机制,我们推断自限流特性来源于ITO电极与氧化铪基阻变层之间形成的界面层。进一步的,我们设计了基于ITO电极下氧化硅/氧化铪双层结构阻变层的器件,发现器件仍具有自限流效应,由此证实了界面层的限流作用。而且,氧化硅层起到了降低操作电流的作用,故功耗大幅度降低至20μW左右。
其他文献
氢被公认是21世界的洁净能源,特别是氢燃料电池汽车以及高安全性、高可靠性的可移动电池的应用为备受期待.然而,氢能应用的关键是发展具有高效安全的贮氢系统.在所有的贮氢方法中,金属氢化物贮氢被人公认是最适合在车载贮氢系统以及高容量移可动电池中使用.稀土在贮氢材料中的应用已被全世界认知,稀土基AB5型贮氢合金已经在我国实现了大规模产业化.
Y2O3 transparent ceramics have been aroused widely interesting as a laser particle medium due to its excellent optical,thermal,chemical and physical characteristics[1].They have been widely used as wi
Fe-Ga-Al合金具有低场磁致伸缩性能较高、原材料价格低廉和力学性能好等优点,是一种非常具有实用前景的磁致伸缩材料.由于合金电阻率较低,在交变场特别是高频应用中会产生严重的涡流损耗,轧制薄带是一种有效降低涡流损耗的方法.本文采用低温轧制工艺制备了(Fe82Ga9Al9)99.9(NbC)0.1合金薄带,并研究了该合金薄带的磁致伸缩性能与热处理组织结构的关系.
自旋电子学起源于20世纪80年代在固态器件中观察到的自旋相关输运行为.从法国的Albert Fert和德国的Peter Griünberg两位科学家相互独立的在金属磁性多层膜中发现巨磁电阻(GMR)效应开始,GMR以及后来发现的隧穿磁电阻(TMR)效应引起了人们的普遍关注.室温下表现出GMR的自旋阀和表现出TMR的磁性隧道结也被广泛应用在计算机硬盘的读出磁头中,带来硬盘存储密度的飞速提高.因此,A
MnFe(P,Si)系列化合物在室温附近具有巨磁热效应,但是当Si完全替代As后,具有很大的热滞,从而影响实际的制冷性能.有报道称B元素的加入使得化合物MnFeP0.63Ge0.12Si0.25Bx的Tc升高,因为B原子进了间隙位置导致了a-b晶面的膨胀,这种膨胀使Mn-Mn和Fe-Fe之间的反铁磁作用减弱,而使Mn层和Fe层之间的铁磁作用增加,进而使Tc升高.实际上,成分和工艺的改变同样也会影响
随着军事和民用领域对电磁屏蔽要求的日益提高,高性能吸波材料的研究已经成为热点。利用各组元的吸波特点,将石墨烯、磁性颗粒和聚苯胺进行复合,不仅能改善磁性颗粒难分散、易团聚的问题,而且能显著提高材料的吸波性能。通过不同的方法制备了三种磁性颗粒、聚苯胺与石墨烯的三元复合材料,采用X射线衍射仪、傅里叶变换红外光谱仪、场发射扫描电镜、高分辨率透射电子显微镜、激光拉曼光谱仪、振动样品磁强计以及矢量网络分析仪对
A Series of(Y,Gd)3A15O12 phosphors doped with Dy3+/Bi3+ were successfully prepared by sol-gel combustion method.The phase composition,morphology and luminescence properties were investigated by X-ray
本文在不同高沸点有机溶剂中制备出Cu掺杂的的FePt纳米颗粒.实验研究表明:在未掺杂Cu元素时,FePt颗粒为fcc结构.在FeC12作为Fe源的条件下,随着Cu元素掺杂量的增加,样品逐渐显示出fct结构的衍射峰且未出现单质铜的特征峰,表明此时Cu原子进入FePt晶格中,Cu与FePt固溶在一起存在.透射电子显微镜显示Cu掺杂导致制备的纳米颗粒有所长大,颗粒的粒径分布变宽.磁性测量结果表明当反应前
用金属有机盐在高温有机溶剂中热分解的方法制备了平均粒径为10.7 nm、大小均匀、分散性良好的CoFe2O4纳米颗粒,然后将部分CoFe2O4纳米颗粒稀释于非晶SiO2基体中.通过系统的磁性测量与分析,在稀释与未稀释的CoFe2O4纳米颗粒中观察到多个与粒子表面自旋有关的现象:1)200 K以下的磁滞回线在外加磁场为零处出现跳跃;2)零场冷曲线在200 K快速下降;3)矫顽力Hc与剩磁比Mr/Ms
钕铁硼(NdFeB)永磁性能优异但耐腐蚀性差。表面涂层防护是提高其耐腐蚀性能的重要手段。目前工业上广泛采用电镀Ni薄膜,而以磁控溅射为代表的PVD技术具有环保且成膜质量好[1]的优点,成为未来镀膜的主要发展方向。本文采用直流磁控溅射方法分别在烧结N35钕铁硼磁体表面沉积Al膜及Ni膜,研究了在不同功率下和不同偏压下沉积薄膜的结构特征以及它们在NaCl溶液中的耐腐蚀性能。