硝基炸药分子的激发态动力学研究进展

来源 :第六届全国高能量密度物理会议 | 被引量 : 0次 | 上传用户:liyang0ly
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  炸药分子在冲击作用下会跃迁到激发态并发生解离过程,在爆轰能量转换过程中起着关键作用,其激发态主要是电子结构变化,其动力学过程在纳秒甚至飞秒量级,一直以来都是研究的难点.传统的静态诊断技术无法探测激发态的瞬态过程,而超快诊断技术如X射线诊断、冲击受激拉曼等研究激发态过程还存在很多问题.利用飞秒激光诱致的超连续白光在激发态研究中有独特的优势,本工作将介绍:a)飞秒瞬态吸收光谱研究六硝基蔗(HNS)激发态演化过程,实验获得HNS在266nm光激发下二维瞬态吸收光谱,通过光谱解析得到HNS的S2态退激发过程中处于“热振动”S1态(S1*态)、S1态和T1态的吸收光谱,得到其寿命分别为0.8 ps,6 ps和4 ns.
其他文献
  美国NIF装置未能如期实现惯性约束聚变中心点火,表明对激光等离子体相互作用、内爆对称性、混合等问题认识不足.与传统中心点火相比,快点火将压缩和点火过程分开,压缩过程中
  使用间接驱动双壳层靶体点火是另外一种在实验室装置(如国家点火装置)下实现聚变点火的途径.和传统的中心热斑点火相比,双壳层靶点火可以在室温下进行,且不需要精确的冲
  为了为六孔球腔能量学实验研究积累经验、发展诊断技术,2015年我们在SGⅢ原型激光器上首次开展了两孔真空球腔能量学的实验研究.实验上采用一组平响应X光探测器(FXRD)通
  当一束强激光脉冲辐照在金属样品表面,会烧蚀形成等离子体,等离子体吸收激光能量向外膨胀,同时向金属样品内部驱动一系列压缩波,压缩波相互追赶,最后在金属样品中形成一个冲击
  快点火集成实验中,ps激光加热压缩燃料的耦合效率对于外推快点火点火条件是一个十分重要的物理量。测量没有ps束加热和有ps束加热两种条件下的中子产额是获得耦合效率的
  基于天光一号KrF准分子激光装置开展了准等熵压缩实验研究,未经过时间整形的激光束直接驱动压缩铝靶,靶内压力达到18 GPa,加载上升时间超过17 ns.利用一维流体力学程序模
  激光间接驱动聚变中,辐射场对称性是实现高质量内爆的关键。然而,由于黑腔内部不同区域辐射场本身差异很大,因此实现较好的辐射场对称性是非常有挑战的。本工作通过实验和模
  冲击压缩实验是获得材料高温高压状态的重要技术手段。由于Ce材料易氧化、易变形的特点,传统的研磨制靶方法已经无法获得高精度的Ce材料状态方程靶。针对高活性材料高精微
  中国工程物理研究院的“聚龙一号”脉冲功率装置是国内首台由24路模块并联组成、峰值输出电流8~10 MA、电流上升时间(10%~90%)约70 ns的大型脉冲功率装置,利用该装置可以开展
  冲击波从金属自由表面卸载时,会产生微物质向外喷射的现象。这种微喷射现象对研究材料在极端条件下的力学响应特性和破坏行为具有非常重要的意义。材料的微喷射形成过程比