新型优先透醇膜的制备及渗透汽化性能研究

来源 :2015中国化工学会学术年会 | 被引量 : 0次 | 上传用户:game1980
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
生物乙醇发酵的过程是典型的产物抑制过程,为了减小产物抑制的现象,提高乙醇产率,可将渗透汽化与乙醇发酵过程相耦合.目前应用较为广泛的PDMS膜渗透通量较低,在一定程度上限制了其工业应用.因此,本文从基团优势的角度出发,利用苯基较强的吸电子能力及疏水性,采用苯基三甲氧基硅烷(PhTMS)及苯基三乙氧基硅烷(PhTES)制备优先透醇膜,开发了一种新型的膜材料.
其他文献
甘露醇作为常用的吸入性药物的载体,其表面形貌对药物的FTP有着重要的影响,本文采用喷雾干燥技术,使用碳酸氢氨为添加剂,制备甘露醇颗粒.使用SEM、XRD、粒度分析仪、密度仪、红外光谱对其形貌、晶型、粒度分布、振实密度和成分进行了分析.SEM结果显示,添加了碳酸氢氨之后,甘露醇表面产生了细小的沟状细纹.XRD的结果表明,喷雾干燥产生的甘露醇颗粒中含有α和β两种晶型,且随着碳酸氢氨含量的增加,β晶型向
简要分析了亚氨基二苄催化脱氢制备亚氨基芪工艺的研究现状,包括气相催化脱氢工艺和液相催化脱氢工艺.综述了国内外亚氨基二苄制备亚氨基芪脱氢催化剂的特点及应用情况.对比亚氨基芪各种生产方法的优缺点.催化脱氢工艺生产的亚氨基芪产品不含溴,可用于生产高品质抗癫痫药物.
异化铁还原与有机污染物的转化、重金属的老化、固定及营养物质的转化过程密切相关,因而研究它的地球化学循环对环境治理具有重要的意义。目前对微生物Fe(Ⅲ)氧化物还原机制的认识还十分有限,为了探究Shewanella xiamenensis与Geobacter sulfurreducens在不同溶解性电子受体中异化铁还原机制的影响,采用SEM表征不同体系内Shewanella xiamenensis与G
低聚酯化燕麦β-葡聚糖是一种应用前景广泛的新型、绿色、低成本的天然表面活性剂,其终产物的HLB值与低聚后糖链的聚合度紧密相关,因此本文旨在通过燕麦β-葡聚糖降解动力学研究,其降解动力学曲线在1.5h-5h之间,基本符合线性分布,拟合方程为:Mw=33961.33384-6088.44742*t(R2=0.98211),并探索合成具有灵活可控的HLB值的低聚酯化燕麦β-葡聚糖.利用微乳化法合成低聚酯
渗透汽化(Pervaporarion, PV)是一种新兴的膜分离操作,具有能耗低、选择性好和易于操作等优点,本研究以聚己二酸1,4-丁二醇酯二醇(PBA-2000)和甲苯二异氰酸酯(TDI)为主要原料合成水性聚氨酯膜,并对苯/环己烷混合液渗透汽化性能进行测试,讨论了苯/环己烷混合体系的渗透汽化分离过程特点.结果表明,当膜厚度增大时,分离因子提高而渗透通量随之下降,这个变化趋势在膜较薄时很明显,达到
采用CaHPO4·2H2O-H2SO4-H3PO4-H2O体系模拟湿法磷酸生产过程,以磷矿浆成分为依据,在单因素条件下分别研究Al3+、Na+和Mg2+对结晶和CaSO4·2H2O水洗速率的影响.研究发现:添加Al3+有利于CaSO4·2H2O晶体粒径增加;添加Na+使得0.9%Na2O含量的Na+引起CaSO4·2H2O晶体团聚,有利于水洗;Mg2+增加溶液粘度,严重影响晶体生长和水洗速率.通过
离子液体溶液体系的黏度性质与其应用密切相关.目前,研究离子液体溶液体系的黏度性质主要采用实验测定、模型关联和模拟预测等方法,研究对象主要集中在离子液体+溶剂二元溶液体系,并且已经积累了大量的黏度数据.与离子液体+溶剂二元溶液体系相比,有关离子液体+溶剂1+溶剂2三元体系的黏度性质的研究相对较少.虽然实验测定能够获得离子液体+溶剂1+溶剂2三元体系的黏度性质,但是不可能穷尽数目庞大的混合体系.因此,
纳米催化材料的精细结构表征、分析及其与性能关联是催化领域的研究热点,如:催化剂表面缺陷种类识别(空位、台阶、杂原子等)和暴露晶面解析对活性位判定的作用,催化剂载体与负载粒子界面处有序、无序结构及交互作用对催化剂合成、性能调控的影响等[1-6].为此,原子尺度解析纳米催化剂的微结构且关联其性能的研究将为设计制备高效催化剂提供重要参考依据.在众多表征手段中,先进电子显微术及其附带功能(X射线能谱、高角
近年来,离子液体成为了研究的热点之一,被称为"可设计的溶剂",离子液体型表面活性剂就是一种具有表面活性的功能化离子液体,它既具有离子液体稳定性好,熔点低,溶解性和催化性能优良的特点,同时又具有表面活性剂的表面吸附、胶团化和表面张力等特性,在绿色溶剂,在电化学、有机合成、气体溶解以及生物催化等方面得到应用广泛.本论文以一系列具有表面活性的硅烷基咪唑离子液体为研究对象,在优化微波合成工艺的基础上,对其
Electrode materials with one-dimensional(1D)micro/nanostructures have been considered as promising ones for application in high-performance lithium-ion batteries.Herein,stepwise co-precipitation and e