Scalable and Economical Fabrication of Porous Silicon@carbon Composite with a High Conversion Yield

来源 :第十八次全国电化学大会 | 被引量 : 0次 | 上传用户:daren19112879
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Despite most porous silicon-based anode materials manifest excellent lithium-ions storage properties and have great potential application in the next generation lithium-ion batteries,the scalable and economical synthesis of porous silicon remains a large obstacle to its industrial application.[1] The present work presents the scalable fabrication of porous silicon with high surface area by using cost-effective SiO2 as raw material,through a modified magnesiothermic reduction approach.The result of XRD shows that no side reactions have occurred,and the diffraction peak assigned to amorphous SiO2 is undetectable,both of which demonstrate the high conversion yield of the reaction.In the following rinsing process,the usage of hydrofluoric acid(HF) has been avoided without any sacrifice of property,which is favorable to the large-scale synthesis.Subsequently,a carbon layer with a thickness of 6 nm has been conformally wrapped on the surface of resulting porous silicon through a CVD process,forming Si@C composite.Owing to the nanoscaled size,high surface area and electrical conductivity,the porous Si@C composite exhibits high reversible capacity,durable cycle life and superior rate performance.It is highly expected that the involved methods in this work may have great possibilities to be applied in the production of commercial silicon anode on an industrial scale.
其他文献
碳纤维增强树脂基复合材料(CFRP)结构的胶接修理及接头使用广泛,在面内载荷下的失效机理研究仍不够充分及细致,尤其主承力结构的修理还未展开讨论和研究。因此本文根据一种简化的CFRP斜胶接结构进行了拉伸试验及数值模拟,用于研究楔形挖补修理结构及斜面对接接头的抗拉伸性能。分析了该结构在拉伸载荷下的应变和承载能力。通过显微镜观察了破坏断面,得出了破坏模式。
先进复合材料由于其良好的力学性能而被广泛应用于航空航天领域。在复合材料结构设计中,螺栓连接是连接结构的主要应用形式。但螺栓连接部分也是复合材料整体结构中相对薄弱的环节。为提高复合材料螺栓连接的承载能力、增大其最终失效载荷、发挥其最优力学性能,对螺栓连接结构进行多层次、多尺度的优化设计已经成为当下复合材料研究热点之一。
复合材料钉群连接是复合材料结构的重要连接形式,也是结构承载的薄弱环节。其失效分析是复合材料结构设计和分析的重要环节。钉群连接的失效分析分为两步:首先进行钉载分配分析,以确定外载荷在各个螺栓的分布情况;然后根据各螺栓承受的载荷,对单个钉孔进行失效评价,其中,挤压和旁路载荷作用下最危险的钉孔处首先失效。因此,深入研究复合材料钉群连接钉载分配测试和预测方法十分必要。
为了发展一种应用于风力机分段叶片的新型连接构造,结合经典层合板理论,首次设计并试制了一只长为13.5米的复合材料分段连接的箱型梁,该连接结构由螺栓套和双头螺栓组成.接着对分段式箱型梁进行模态测试和弯曲载荷作用下的静力试验,以及有限元多维混合建模分析,结果表明:模态频率和挠度的数值分析值与实验吻合很好,验证了模型的有效性,结构的大变形非线性效应不明显,在临近连接局部,复合材料铺层结构存在明显的应力集
基于二维有限元分析模型,提出了一种快速预测复合材料多钉连接钉载分配的分析方法.螺栓采用Fastener单元和Link单元模拟.Fastener单元模拟螺栓和孔之间的挤压作用,Link单元则模拟螺栓的剪切和弯曲刚度.Link单元的刚度通过单钉连接的三维细节分析模型计算得到,以捕捉螺栓端头形式、次弯曲等因素对钉载分配的影响.最后模型通过三维有限元模型和试验数据进行了校核和验证,结果显示所提出的二维模型
For validating an invented joint for sectional wind turbine blades, a separated composite box-beam with new characteristics was designed and fabricated for the first time,which were composed of metal
Due to its high load-carrying efficiency, multi-step bonded joints are widely used in composite joints and repairs.A new multi-step manufacturing process was introduced, with which a sharp comer could
By establishing the representative volume element (RVE) model of three-dimensional (3D) six-directional braided composites, stiffness prediction of the composite under different braiding angle and fib
MnO作为一种过渡金属氧化物,其比容量高(理论容量756 mAh·g-1,是石墨的2倍)、密度大(5.43g·cm-3)、电动势低(1.032Vvs.Li+/Li)、环境友好[1].而广西的锰资源占全国锰矿资源的三分之一,居全国首位,高附加值MnO/C负极材料的开发,可为锰资源的开发利用提供新的发展思路,促进我国及广西锰资源的深加工利用,具有良好的应用前景.针对目前文献中报道的MnO负极材料存在电
会议
Lithium-ion batteries are widely used in modern instruments and devices because of their long lifetime,environmental benignity and high energy density.In recent years,intensive research has been condu
会议