电化学法制备新型碳量子点及在生化分析中的应用

来源 :2016全国生命分析化学学术大会 | 被引量 : 0次 | 上传用户:roger84115
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  碳量子点是一种新型碳材料,具有类似于传统半导体量子点的优异的发光性能与小尺寸特性(一般小于10 nm),还具有原料丰富、毒性小、生物相容性等诸多优势,在细胞成像、药物载体、传感器制备、光学、催化等领域具有极大的应用价值。目前关于制备碳量子点方法的报道很多,主要包括激光剥离石墨法、电弧放电法、化学氧化法和高温热解法等,这些方法往往需要较大型的设备或原料昂贵或者工序复杂、高能耗等,一般难以用于实时快速制备,大大限制了碳量子点的实际应用。
其他文献
Large-scale quantification of protein O-linked β-N-acetylglucosamine(O-GlcNAc)modification in a site-specific manner remains a key challenge in studying O-GlcNAc biology.
芽孢又称内生孢子,是一些细菌在营养条件缺乏等极端环境下形成的圆形或椭圆形休眠体,具有耐受高温、高压、辐射及多种有毒化学物质的抗逆性特点[1]。
我们基于超分子自组装原理,成功设计并构建了一系列"超分子杀菌剂"。通过可逆地调控杀菌剂杀菌活性位点与CB[7]之间的组装/解组装过程,我们成功实现了对超分子杀菌剂杀菌活性的可逆调控。
N1-methyladenosine(m1A),first characterized more than 50 years ago,[1] has recently been found as a reversible and dynamic modification in mRNA.
Stimulated emission depletion(STED)nanoscopy is regarded as the high-performing super-resolution imaging technique which has become a promising tool for visualizing microstructure imaging.
Expansion microscopy(ExM)improves the resolution of fluorescence microscopy though physically magnification of biological specimens embedded in expandable polyelectrolyte gel.
生命体内的炎症反应可以招募白细胞,但这一生理过程仍然存在许多不明确的、有歧义的地方,对白细胞进行有效的标记对于了解白细胞募集到炎症组织的过程至关重要.我们设计了羧基化硅烷和TAT 细胞穿膜肽功能化的近红外光发射的长余辉纳米探针(PLNP-TAT),用于标记J774A.1 巨噬细胞并追踪其归航到炎症组织.功能化的近红外长余辉纳米探针免原位激发,并可用红光LED 灯重复激励,成像前激发2 min,成像
Boronophenylalanine(BPA)is the dominant boron delivery agent for boron neutron capture therapy(BNCT),and [18F]FBPA has been developed to assist the treatment planning for BPA-BNCT.
核酸特异性剪切在生命科学的许多前沿领域中,如DNA放大检测、高通量测序、精准基因编辑等,具有十分重要的作用。本文报道了一种利用传统Type ⅡS限制性内切酶进行可编程的、序列特异性核酸剪切的方法,称之为定位探针介导剪切(Aligner-mediated cleavage,AMC)。该方法不依赖于目标核酸分子中的任何特定序列,仅使用一种内切酶和一个50个碱基左右的定位探针,就可以在任一位点实现特异性
适配体是一种在体外通过指数富集配基进化系统筛选出的单链DNA 或RNA,对靶标具有高的亲和力和特异性。[1]G-四链体DNAzyme 是一种类过氧化氢酶性质的人工仿生酶,能够催化以过氧化氢为介质的氧化反应,能够氧化硫胺素,产生荧光物质。