聚苯胺纳米材料的多功能化

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:hhzzmm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  近年来,聚苯胺作为典型的导电聚合物的代表之一,已经被广泛关注并且成功的应用于不同的研究领域,比如非易失性存储器、传感器、超级电容器等。我们课题组在获得良好的聚苯胺结构的基础之上,我们将其有效的利用于以下三个方面:一)作为反应型模板合成二氧化锰:将聚苯胺纳米粒子与高锰酸钾进行反应,于室温下快速合成了中空多级结构的二氧化锰纳米材料,在超级电容器方面体现出良好的电化学性能;二)作为碳源应用于超级电容器:利用一步法合成的中空聚苯胺低聚物,在氮气保护下煅烧后,得到形态维持良好的中空碳球,作为电极材料构建对称型超级电容器,具有良好的比电容与稳定性;三)作为氮掺杂碳源应用于氧还原催化:将蛋黄蛋壳型聚苯胺@二氧化硅材料进行煅烧,利用二氧化硅的保护层作用,得到较好的氮掺杂碳纳米颗粒,除去壳层应用于氧还原催化反应,体现出较好的起始电位与动力学电流密度。
其他文献
  手性开关是指在外界刺激作用下分子的手性状态的改变,并且这种改变可以被检测,即称之为手性分子开关,其在分子识别,传感和信息存储多领域有着广阔的应用前景。本研究中将阳离
  通过共价反应诱导组装,制备单分散的二肽纳米球。该球不仅具有优良的生物相容性,而且能够发射红色荧光。此外,该球能作为本征光敏剂,在光照下传递能量给氧气,产生单线态氧,进而
  物理旋涂,多孔基质包载和化学单层组装是荧光薄膜传感材料创制的主要途径,但业已报道的传感薄膜存在着气体分子通透性较差、光照下气固界面上荧光物种易降解等问题而限制了
  蛋白质吸附不仅广泛出现在很多基本的生物过程中,而且在蛋白质层析分离、固体基材的药物传递、生物传感器、生物燃料电池和医用生物材料等应用上也起到重要作用。对于这些
  稀土β-二酮化合物因其优异的光学性质而在荧光功能材料的制备领域具有不可取代的地位。然而,如何克服其机械性能及光热稳定性差等缺陷,仍是稀土发光材料在实际应用中亟待
  利用离心等方法将多分散纳米颗粒按粒径和形状进行有效分离,需要对纳米颗粒在离心场中的运动进行精确的分析。对非球形颗粒来说,挑战来自其形状依赖的阻力系数,及粒子取向和
  复杂胶体的微结构调控和功能化是胶体研究研究的重要内容之一.具有不同化学分区的Janus材料是复杂胶体的典型代表.Janus材料因其特殊的结构和性能已成为材料科学研究热点
  具有刚性连接基团的Gemini两亲分子由于其的结构特殊性,可以通过调控分子结构或者自组装的外界环境,使其组装成为一系列具有不同特性的功能材料.我们以连接基团为偶氮苯
  材料表/界面功能化是实现材料用途,特别是实现航天航空、生物医药、新能源等高附加值应用的一个关键环节,[1]其内容是赋予材料表面丰富的化学和物理性能,如亲/疏水、抗腐蚀
  贵金属基复合纳米结构在生物医药、环境治理以及能源开发等领域展现出了良好的应用前景。我们利用分子组装策略嫁接化学合成方法,构筑了系列具有规则多级纳米结构的贵金属