盐酸吡哆醛在羧基化碳纳米片修饰电极上的电化学行为及其应用

来源 :第十三届全国电分析化学学术会议 | 被引量 : 0次 | 上传用户:tomjerry2005
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  碳纳米片具有良好的稳定性、大的表面积和优异的导电性能,被广泛应用于锂离子电池、超级电容器等领域。本文采用了一种简单廉价的超声电化学方法制备了羧基化碳纳米片,产物显示了优异的分散性和电催化性能。
其他文献
  芳香族硝基化合物(NACs)是一种剧毒难降解的化合物,在环境中由于它们的致突变性、难降解性和累积性,许多国家已经把它列为有害物质之一[1]。迄今,人们已经开发了许多方法来
  电化学发光是由电化学反应直接或间接引发而产生的化学发光现象,具有灵敏度高、易操作、可视化等优点,可用于环境监测、药物分析、免疫分析等方面。分子印迹技术是模板分子
  利用涂布法制备了介孔碳修饰玻碳电极(CMK/GCE)。通过示差脉冲伏安法(DPV)对邻苯二酚(CC)进行了电化学测验。实验结果表明:该修饰电极对邻苯二酚的氧化还原反应有良好的电
  用涂布法将氧化石墨烯分散液和硝酸镍溶液分别滴涂在玻碳电极上,再置于氢氧化钠溶液中扫描,得氧化石墨烯/纳米氧化镍修饰玻碳电极(GO-NiO/GCE)。研究了多巴胺(DA)在玻碳电
  近年来,环境问题和能源问题日益受到人们的关注,因此,新储能材料的研究成为热点问题。在实验中对三种可储电多孔材料的制备方法进行了改进和对比,制备方法一为通过无机溶
会议
  磁珠电化学发光免疫分析法具有敏度高、选择性好、快速等优点在临床分析中已经得到广泛应用1.然而,商品化的流通型磁珠电化学发光免疫分析方法存在工作电极再生难,化学清洗
  采用电聚合方法在Au NPs/Graphene-carbon nanotubes/ILs 复合材料修饰的玻碳电极上制备了白藜芦醇分子印迹电化学传感器。由一步水热法制得的Au NPs/Graphene-carbon na
  最近,科研工作者在研究石墨烯的基础上,发现了新型准零维碳纳米材料-石墨烯量子点(Graphene quantum dots,GQDs)。与其它半导体量子点和金属量子点类似,GQDs具有优异的荧
  本文以构造新型第三代电化学生物传感器为研究目的,以线性亲水性多糖海藻酸盐作为修饰电极材料进行直接电化学研究,将肌红蛋白组装在海藻酸钙微球和石墨烯混合后的复合材料
  本研究中,我们率先发展了一种新颖的超灵敏检测分析糖蛋白的电化学方法,其结合了硼酸吸附分子印迹聚合物对糖蛋白良好的选择识别作用与功能化SiO2@Au 纳米材料进行放大电化