铁酸钴/石墨烯复合材料的制备及其用作锂离子电池负极材料的研究

来源 :中国化学会第30届学术年会 | 被引量 : 0次 | 上传用户:monorrch
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  锂离子电池目前广泛应用于便携式电子设备,移动通讯等领域中[1]。目前商业锂离子电池负极材料石墨由于其理论比容量低(372 mA h/g),从而不能满足人们的生活需求。因此,设计和开发一种高比容量锂离子负极材料是当前所亟需。
其他文献
污水灌溉导致的土壤污染问题一直备受关注,生活污水中含有较高浓度的抗生素残留,因此污灌土壤可能会受到抗生素的污染.本研究以接受大量生活污水的凉水河为研究对象,从2008年到2011年,系统采集了凉水河两岸污灌区农田土壤以及灌溉河水样品,探讨该地区抗生素的污染分布,并评价该地区的抗生素污染现状.研究发现该地区土壤中普遍存在抗生素的污染.土壤样品中共有8种喹诺酮、6种磺胺和3种大环内酯类抗生素检出.其中
Fenuron,isopronuron,linuron and metobromuron,belonging to substituted urea herbicides,are make significant contribution of the use of plant protection products in agriculture.However,owing to its pers
Four substituted urea herbicides were selected as the target compounds,such as fenuron,isopronuron,linuron and metobromuron,to investigate the photocatalytic degradation kinetics and mechanism in the
会议
Group separation of actinides over lanthanides is extremely challenging in spent nuclear reprocessing.Traditional extractant tributyl phosphate(TBP)used in PUREX process can efficiently extract uraniu
会议
铀酰离子(UO22+)是自然界中铀元素最稳定的存在形式,在核素迁移及核燃料后处理中具有重要地位。铀酰化合物具有特征的吸光和发光性质[1], 已经被广泛用于研究自然和人工环境中铀酰的物种形态。理论研究铀酰化合物的配位几何、电子结构和激发态性质,对于理解其电子光谱的本质具有重要意义。但由于较强的相对论效应和复杂的电子相关效应,锕系化合物电子光谱的精确理论计算面临极大的困难。基于包含标量和旋-轨耦合相对
以四溴双酚A(TBBPA)和六溴环十二烷(HBCD)为代表的溴系阻燃剂(BFRs)是备受关注的环境污染物.本研究探索2013年采集自37位北京市产妇的134份普通人群母乳中的TBBPA和HBCD的污染水平、影响因素以及待测物浓度在哺乳期内的时间趋势.母乳样经索提后经凝胶渗透色谱和浓硫酸除脂,并经过LC-Si固相萃取柱净化后,采用超高效液相色谱-串联质谱法测定TBBPA和HBCD.2、将检测结果与调
本文利用氢键层层组装方法,将中性聚合物—聚乙烯咔唑(PVK)和中性磷光小分子—铱金属配合物(Ir(F2ppy)3)与层状复合金属氢氧化物(LDHs)纳米片组装成超分子复合薄膜。通过对复合薄膜的结构、荧光性质等的表征结果说明,作为供体和受体的 PVK 和 Ir(F2ppy)3分子在 LDHs 层间实现了有效的二维能量转移过程(FRET),薄膜的发光效率和磷光寿命得到了大大的提高。并且,基于挥发性有机
草酸是稀土金属提取过程中重要的沉淀剂,本文用硝酸氧化葡萄糖制取草酸.以原糖为原料,通过硫酸的水解,硝酸的氧化制得粗品草酸,再通过重结晶提纯草酸,母液用磷酸三丁酯萃取再生硫酸,处理后循环利用与生产.研究结果:硫酸水解的物料比(原糖/硫酸为1∶1,10mol/LH+的硫酸),温度70-80℃,时间4h;硝酸氧化的物料比(原糖/硝酸为 1∶2.8),温度70℃左右,时间4h,V2O5做催化剂;粗品草酸重
本文合成了一种新型硫脲分子,并对化合物进行结构表征.该分子的分子式是C14H11N5O5S,属于P2(1)/c 空间群,a=6.2702(9)nm,b=8.0756(12)nm,c=15.500(2)nm,α=γ=90.00°,β= 96.293(3)°,V =780.1(2),Dc=1.538g·cm-3,μ=0.246cm-1,F(000)=372,Z=2,R1=0.0472,wR2=0.12
当前,碱性聚合物电解质膜的稳定性成为限制碱性聚合物电解质膜燃料电池发展的关键因素,尤其是官能团的稳定性远不能满足电池需求.研究表明,季铵盐在高浓度碱中受OH-攻击发生降解.目前,咪唑基团(尤其是2-位取代咪唑)作为可替代季铵盐的官能团成为研究的热点.然而咪唑型官能团的稳定性到底如何?它能否适应碱性聚合物电解质燃料电池的化学环境?本研究工作为了对比验证季铵盐与2-甲基咪唑盐在碱中的稳定性,将合成的单