铜双极微马达在折线通道中的运动研究

来源 :2016全国生命分析化学学术大会 | 被引量 : 0次 | 上传用户:linxinrudo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  When an electronic conductor was placed in a fluid filled channel with an appropriate external electric field,Faradaic reactions could take place at both ends of the conductor,which was called a bipolar electrode.[1]We report that conducting objects could be propelled in folded liquid filled channels by bipolar electrochemistry.This approach was based on controlling the formation of hydrogen bubbles at one extremity of a bipolar electrode.In this work,copper wires used as microswommers could move in folded channels with angles from 30° to 180° by bubble propulsion and the velocity fluctuated over time.A proportional relation between polarization voltage and average velocity in linear channel was verified.The motion of microswimmers could be controlled within these types of channels in space and time,which might broaden the applications of micromachines in bipolar electrochemistry.
其他文献
20年来我们实验室提出了系统的移动反应界面(moving reaction boundary,MRB)的概念、理论与方法,包括中和界面、沉淀界面、络合界面、氧化还原界面和超分子界面等[1]。基于MRB概念,我们提出了MRB电泳滴定的概念、方法和装置[2,3]。在此基础上,我们提出了蛋白质电泳滴定理论与芯片技术,解决了蛋白质表面残基滴定分析,乳品蛋白含量滴定芯片技术[2-4],乳品食品以次充好的定量
电化学-质谱联用技术在表征电化学反应机理,药物代谢过程及化学成像有着重要的应用。现有的电化学质谱联用装置是通过流动的电化学池将电化学反应产物引入质谱进行分析,电极表面的产物不能立即被质谱分析,所以很难检测短寿命中间体。[1]本工作中,利用玻璃的亲水性和杂化电极的结构特点,首次将杂化电极用作微型电化学池,结合压电枪离子化进样法,使电极表面的反应产物或中间体直接进入质谱进行检测,并用该方法研究了尿酸氧
基于生物离子孔道的特性,孔径在2-3 nm之间的垂直有序介孔二氧化硅自支撑薄膜(SNM)能够较好地模拟生物膜中的离子孔道[1]。在低离子强度(1 mM KCl)的情况下,双电层重叠,外加电场有利于调节纳米孔内多组分离子的传输行为。当外施加正电压时,即电场方向从料液指向渗透液,阳离子(MV2+)受到的驱动力是浓度梯度与电迁移力之和。因此,MV2+的通量较仅浓差扩散产生的通量明显变大,且随着外加电场强
荧光碳纳米颗粒(CNPs)作为一种新型的荧光纳米材料,由于具有良好的水溶性和良好的生物相容性等优势,已被广泛的应用于生物成像、荧光传感等方面.目前,CNPs的合成方法有酸氧化法,水热法,微波辅助法多种,但大批量合成仍有一定困难.实验证实部分工业产品中含有较高含金量的CNPs,从这些产品中直接提取CNPs具有潜在的应用价值.本工作从一种商品化着色剂中提取了其中的荧光组分,结果表明该荧光组分为富含羟基
石墨烯由于其独特的二维平面结构和特殊的能带结构以及各种优越的物理化学性能,使其在新材料、超级电容器、超级催化剂、环保产业,生物医药领域均具有广泛的应用前景。我们用化学键合的方式将银(Ag)纳米颗粒修饰到GO(氧化石墨烯)表面,从而得到了Ag/PEI/GO纳米杂化材料[1]。利用 Hg 对Ag/PEI/GO纳米杂化材料过氧化物酶活性的刺激增强作用,高灵敏度,高选择性,快速检测 Hg2+[2]。本实验
石墨烯等离激元具有独特的电学可调性、低本征损耗及高度光场局域等优异的性能.通过调控石墨烯材料形貌以及电子结构,可以在近红外、中红外及太赫兹波段产生有效的局域表面等离子体共振,使得石墨烯等离激元在生物/化学传感器、光谱学以及红外/太赫兹探测等领域具有重要应用.红外光谱能够提供分子的精细结构,在对物质的分析和鉴定中具有广泛用途.作为红外光谱的扩展,衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)
双电势比率电致化学发光(ECL)具有高的灵敏度以及可在复杂体系环境中实现精确检测等优势,近几年来得到了广泛的关注。本文采用化学氧化法制备了石墨烯量子点(GQDs),将其作为ECL发光体[1],构建了一种新型的双电势比率ECL体系(图1),并将该双电势比率ECL应用于生物免疫传感。从图2结果可以看出,该ECL传感能够高灵敏的检测抗原,检测线性范围宽。
制备Co3O4/聚苯胺(PANI)纳米线阵列石墨烯的纳米复合材料,以扫描电子显微镜、x射线衍射,傅里叶变换红外光谱和热重分析为表征手段,电催化氧化检测半胱氨酸和N-乙酰半胱氨酸.基于纳米复合材料修饰玻璃碳电极进行了循环伏安法、计时电流法和差分脉冲伏安法测量电流响应.结果表明,修饰电极对半胱氨酸和N-乙酰半胱氨酸电催化性能好,对半胱氨酸的电催化氧化两个线性校准范围分别为12-1280uM和1280-
大气颗粒物(APM)与很多人类疾病有关,特别是细颗粒物和超细颗粒物的危害更大.大气颗粒物中的金属成分是影响人类身心健康的重要污染物之一.研究表明金属成分对人类身心健康的影响不仅与其总浓度有关,更取决于其生物利用态浓度.因此,研究大气颗粒物中金属成分的生物可给性对于评价其潜在的人类健康风险具有重要意义.由于人类大部分时间是在室内度过的,所以有必要研究室内大气颗粒物的金属成分与重金属生物可给性.目前,
本文使用冰-模板法对铜菲罗啉和氧化石墨烯的混合物进行了冻干处理,热退火后合成了铜和氮掺杂的超轻多孔的还原氧化石墨烯(CNRGO).通过扫描电子显微镜、透射电子显微镜以及其它表征技术,给出了产物的完整形貌和组成分析.得到的产物CNRGO含有Cu2+-N活性位点,修饰到玻碳电极上后,对DNA的四个核碱基:鸟嘌呤、腺嘌呤、胞嘧啶和胸腺嘧啶均有显著的电催化活性,提出了相应的催化机理.为了获得最佳的实验条件