微流控芯片单细胞转录组测序技术

来源 :第十二届全国电分析化学学术会议 | 被引量 : 0次 | 上传用户:kuaiyu001
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  RNA-sequencing of single cells enables measurement biological variation in heterogeneous cellular populations and dissection of transcriptome complexity that is masked in ensemble measurements of gene expression.The low quantity of RNA in a single-cell,however,hinders efficient and consistent reverse transcription and amplification of cDNA limiting accuracy and obscuring biological variation with high technical noise.We developed a microfluidic approach to prepare cDNA from single cells for high-throughput transcriptome sequencing.The microfluidic platform facilitates single-cell manipulation,minimizes contamination,and furthermore provides improved detection sensitivity and measurement precision which is necessary for differentiating biological variability from technical noise.
其他文献
研究了基于固定化的CdTe 量子点与鲁米诺之间的共振能量转移增强其电化学发光的技术途径(ECRET),CdTe 量子点由APTMS/戊二醛交联膜或含石墨烯的交联膜固定于ITO表面,获得如图所示的功能化膜.以此为工作电极,鲁米诺的电化学发光信号获得了一个数量级左右的提高,最佳发光pH 值由原来的大于13 降低至11,拓宽了其应用范围.在最优条件下,对鲁米诺的检出限达到10-9mol/L.以此为基础,
会议
芦丁,又名为维生素P,是一种最常见的黄酮醇苷.由于其生物和药理功能,如抗炎、抗菌、抗衰老和抗氧化剂,它已被广泛研究和应用[1-3].本文以氧化石墨烯为原料,采用尿素为氮掺杂剂,在水热条件下(160 ℃,3 h)得到了氮掺杂石墨烯(NG),该氮掺杂石墨烯中氮原子百分比为5.86%,其中吡咯氮、吡啶氮和石墨化氮的含量分别为56.7%,25.4%和17.9%.将该氮掺杂石墨烯修饰到玻碳电极(GCE)上,
生物技术、纳米技术、单分子技术相结合的蛋白质纳米通道单分子分析技术已经成为研究单分子间相互作用、单分子检测和DNA 测序的重要工具[1,2].利用α-溶血素纳米单通道技术,在直流电场力的作用下,单个单链DNA(ssDNA)分子穿过纳米单通道,产生特征电流阻塞与滞留时间,实现单分子水平检测与分析.但是,通常采用该方法对实际样品进行分析需微摩尔浓度.已有的研究表明,在非匀强电场中,利用介电泳力可以实现
A new lanthanide metal–organic framework,[La(BTC)(H2O)(DMF)] was synthesized under hydrothermal conditions and were characterized by scanning electron microscopy in combination with energy dispersive
光电化学分析是近年来新兴起的一种检测方法,在生物分析领域具有广阔的应用前景[1-3]。酶传感具有灵敏度高,专一性强,转化效率高的优点。迄今,光电化学酶传感分析的模式较为有限。显然,开发新型光电化学酶传感器具有重要的意义。迄今为止,所有的光电化学酶传感器都需要酶在电极表面的固定这一步骤。本工作报道了一种不需要此步骤的传感方法。详细来说,我们首先制备了BiOI 纳米片/TiO2 纳米颗粒p-n 结光电
DNA 甲基化是指在特定DNA 序列中的腺嘌呤或胞嘧啶碱基上引入甲基基团,它是一种重要的基因活动,在基因的转录、真核生物的发展、细胞分化和重要人类疾病的发病机理研究等方面扮演着重要的角色1.因此,实现对DNA 甲基化的高选择性定量分析在生物学和临床分析领域中都非常重要.
会议
DNA 甲基化是一种重要的表观遗传修饰,在维持正常细胞功能、遗传印记及胚胎发育中起着重要作用[1,2].近年来,研究表明[3],存在一种DNA 去甲基化过程,与DNA 甲基化过程相协调,从而改变DNA 甲基化状态.DNA 去甲基化过程可能是由某特定酶(如DNA去甲基化酶),催化DNA 的5-甲基胞嘧啶脱去甲基而实现的[4].
会议
Organophosphates (OPs) widely exist in ecosystem as toxic substances,and it is high desire to develop a sensitive and rapid analytical method in the field.In this talk,a genetically engineered Escheri
A polystyrene/grapheme nanosheets (PS/GNSs)was proposed to modify glassy carbon electrode (GCE) for the immobilization of protein.Setting glucose oxidase (GOD) as a model,direct electrochemistry of pr
微悬臂是一种能够将分子间的相互作用转化为机械运动的装置。近年来,微悬臂传感器已发展为一种非常有前景的生物传感技术。微悬臂传感器有两种工作模式:静态模式和动态模式。在静态模式下,待测物和悬臂表面识别分子的相互作用使悬臂上下两个表面出现应力差,从而产生偏转。在动态模式下,悬臂质量的增加使其共振频率减小。与传统的分析方法相比,微悬臂传感器具有响应快、灵敏度高、无需标记等优点。我们将适配子(或单链DNA)