【摘 要】
:
由低维介孔纳米构筑单元自组装构筑(亚)微米级纳微超结构成为超级电容器电极材料研究领域的热点之一.它既可以充分利用其介孔纳米构筑单元的优良储能优势,也可以保证其本身高稳定性,易加工和高填实密度等优势,满足工业化生产要求[1-5].
【机 构】
:
安徽工业大学材料科学与工程学院,安徽,马鞍山,243002 南京航空航天大学材料科学与技术学院,江
论文部分内容阅读
由低维介孔纳米构筑单元自组装构筑(亚)微米级纳微超结构成为超级电容器电极材料研究领域的热点之一.它既可以充分利用其介孔纳米构筑单元的优良储能优势,也可以保证其本身高稳定性,易加工和高填实密度等优势,满足工业化生产要求[1-5].
其他文献
The simple synthesis of nanostructures with high charge-carrier transport is an important aim for the applications in supercapacitors [1-5].Here,we report a novel hybrid electrode material with mesopo
Lithium-sulfur batteries hold great promise for serving as next generation high energy density batteries.However,the shuttle of polysulfide induces rapid capacity degradation and poor cycling stabilit
In recent years,rechargeable lithium-ion battery has occupied the dominant position in the fields of smallmobile consumer electronics products,and also shown prospects remarkable of electric vehicles
Lithium-sulfur (Li-S) batteries have recently been considered as the one of the prospective candidates for high performance energy storage technologies in terms of their high specific capacity (1675 m
与传统锂离子电池相比,锂硫电池的优势更多地体现在理论比容量高和成本低,但其长期循环稳定性则较差[1].硫与热裂解聚丙烯腈的复合物(S/pPAN)是一种很有潜力的正极材料[2],并且以水性羰基化的贝塔环糊精作为粘结剂时循环稳定性较好[3],但其硫含量还有待于进一步提高.
As the conventional Li-ion batteries are approaching its theoretical limits.Li-S batteries have attractedmore and more attention for their high energy density(2600 Wh kg-1).Carbon materials with vario
Magnesium alloy has great potential in the energy field because of its high electronegativity,chemical activity and high energy density.Usually the anode material is MnO2.In this paper,we have studied
以单质硫为正极的锂硫二次电池中,硫正极具有极高的理论容量(1675mAhg-1)和能量密度(2600Wh kg-1),远大于现阶段使用的商业化二次电池,且单质硫具有资源丰富、环境友好等优点,使得该体系具有极大的商业价值.研究表明,由于“穿梭效应”、单质硫及其放电产物的绝缘性以及硫与多硫化锂在充放电过程中体积变化等现象的存在,制约了二次锂硫电池的性能提高.目前将多孔碳材料应用于硫正极可显著改善电池性
As TiN demonstrates superior electrocatalytic activity combined with high electrical conductivity and excellent chemical resistance to acid/alkali,nanostructured TiN materials have been considered as
近年来,二氟草酸硼酸根(DFOB-)基电解质盐在锂离子电池,电化学电容器等储能领域的应用受到瞩目.从化学结构上来看它由四氟硼酸根(BF4-)与双草酸硼酸根(BOB-)拼合而成,具有更低的对称性,因而具有独特的优势.