大渡河金川面板堆石坝渗控特性研究

来源 :第一届堆石坝国际研讨会 | 被引量 : 0次 | 上传用户:hernquist
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  深入研究了金川水电站枢纽区地质条件和混凝土面板堆石坝防渗设计方案,建立了合理的反映坝体结构和坝基防、排水系统的三维有限元模型;采用理论上严密的Signorini型变分不等式方法和自适应罚Heaviside函数相结合方法,通过有限元技术求解无压渗流自由面;并采用无厚度的薄层单元模拟混凝土面板裂缝以及坝体中存在的各类施工分缝。通过不同工况的计算,得出面板及垫层对坝体渗透特性存在一些影响,并提出相应的建议。
其他文献
本文对龙背湾面板堆石坝的布置以及大坝填筑材料和稳定与应力分析等进行了研究,根据实际情况,在设计中保留部分覆盖层作为坝体的一部分,有利于减少开挖和填筑,节省投资;取消了周边缝中部止水,有利于施工。在垫层坡面施工中,采用挤压式混凝土边墙坡面施工方法,以替代传统工艺中复杂的工序,不但加快了施工进度,而且使垫层料坡面压实的施工质量也有所提高。在坝体填筑中利用了河床天然砂砾石料及溢洪道开挖料作为筑坝材料,大
在设计一个混凝土面板堆石坝时,混凝土面板的水密性、耐久性以及抗裂性,是施工、蓄水或运行过程中维持大坝正确性能的主要考虑因素。尽管一般认为,混凝土面板的变形取决于邻近趾板的基础岩石的几何条件与尺寸,基岩与坝体之间的相对刚度,但到目前为止没有确切的证据证明变形与这些因素之间的关系。在本研究中,实施大型三轴试验来确定作为大坝主填充区域的砾石与填石材料的强度与变形特性。使用物理建模(离心试验)与数值分析来
本文提出了一种新的技术,用于估算塑性混凝土的弹性模量。塑性混凝土是典型混凝土与黏土、膨润土的混合物,近年来已广泛应用于世界各地许多大坝工程中防渗墙的发展。为保证大坝安全,正确估算塑性混凝土的弹性模量非常重要,因为它应当接近周围土壤的弹性模量,以便承受外加变形而不破裂。文献回顾表明,弹性模量估算的现有方法并不那么有效,并且获得的数据比较分散。经过多次实验,我们发现,与模量估算错误相关的主要问题是测试
本文针对硗碛大坝坝基廊道测压管UP14的观测资料和防渗墙灌浆处理过程,分析讨论了大坝防渗墙的缺陷部位和灌浆处理效果;对探寻防渗墙缺陷位置的方法,亦作粗浅论述。
本文通过对冶勒大坝2005~2008年渗流量监测资料统计,以传统方式定性分析渗流量与各环境物理量之间的影响变化关系,初步了解冶勒大坝渗流量主要受上游库水位变化的影响,随库水位上升而不断增大,渗流量与库水位呈正相关;另外,渗流量还与降雨、温度、时效等有关,但受上述因子影响波动不大。为进一步准确掌握渗流发展变化趋势和综合性态,文中还以水位、降雨、温度和时效等作为影响因子,以此建立统计回归分析预报方程,
本文用解析法检验了地震期间作用于刚性坝面板上的动水压力,作用于刚性坝上的地震力方程用两维势流理论准确求解,得出的是上游坝面以固定坡度倾斜且库底为两阶情形下的解析解。库底的倾斜部分坡度是固定的,因此水库断面是梯形。求得的解与经验数据和数值解对比后均吻合良好。
根据瀑布沟导流洞混凝土的施工和技术要求,提出了下部采用泵送混凝土,顶部采用自密实混凝土的技术方案.采用功能性化学外加剂和Ⅰ级粉煤灰,优化了水泥浆体的水化放热曲线,延缓了水化放热峰出现的时间,减小了最终的水化热.采用不同种类的复合膨胀剂进行优化复合,补偿水化硬化不同阶段的自收缩和温度收缩,配制出了早期微膨胀,14d以后膨胀稳定且无收缩,体积稳定且满足工作性、力学指标及耐久性要求的混凝土.约束圆环模拟
Irape水电站大坝高达208m,是巴西最高的大坝。这是一座心墙堆石坝,具有1100万m3的填筑体积,目前正在施工中。大坝修筑于一个狭窄的峡谷中,其底端1/3是由封闭的峡谷构成的。减小该地形对心墙区应力分布的不利影响,对于大坝填充分区的定义及筑坝材料的选择来说是需要考虑的一个要素。根据应力—变形研究,通过二维和三维模拟,实施了一系列重要的仪器监测措施。本论文总结了该项目的一些特有问题的解决方案并比
四面体块体(TB)是一种在截流工程和堤岸防护工程中常用的材料,作为四面体块体三维水动力特性的初步研究,本文在通用计算流体力学软件Fluent的基础上建立了单一贴壁四面体块体的三维数值水动力模型,用来预测四面体块体的绕流场和所受阻力.采用重整化群(RNG) k—ε紊流模型封闭雷诺时均方程(RANS),对比了计算结果与试验结果.研究表明:该数值模型有效地补充了相应的试验研究,有助于理解四面体块体的复杂
冶勒水电站引水系统于2005年9月开始充水并投入运行,但不久竖井至蝶阀室段出现渗压异常,多处见大股状涌水现象。虽在2007年7月进行了灌浆处理,原渗水基本消失,但渗压观测数据表明该段渗透压力仍与洞压水位关系密切。对相关三个剖面的观测数据进行分析,认为在G—G监测剖面左腰及其顶部存在的裂缝可能是导致竖井到蝶阀室段渗压异常的主要原因。但该段围岩稳定性较好、渗压水头不高、渗流量较小,其他监测仪器无异常变