产纤维素酶增效蛋白的放线菌筛选

来源 :2015中国化工学会学术年会 | 被引量 : 0次 | 上传用户:baichuan817
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高纤维素酶降解纤维素底物的能力,获得可协同纤维素酶降解纤维素底物的增效蛋白,从土壤中筛选可协同纤维素酶的放线菌.采用稀释涂布法分离,重铬酸钾溶液加入土壤悬浮液中抑制细菌生长进行筛选;根据放线菌菌落形态、培养特征、生理生化特进行初步选择和鉴定.通过分离筛选得到3株放线菌M1、M2、M3,3株放线菌胞内蛋白均能协同纤维素酶降解纤维素底物,产物还原糖的生成量是纤维素酶单独作用的2.5-3.5倍,而其本身不能生成可检测还原糖.
其他文献
碳酸乙烯酯是两步法从环氧乙烷生成乙二醇的重要中间产物,通过环氧乙烷和二氧化碳在催化剂存在下反应得到,是生产乙二醇的节能方法.聚合物负载的多相催化剂可用于该反应,但该类催化剂由于载体的原因存在热稳定性差、不耐溶胀的问题.使用质量含量约2.4wt%的纳米碳材料复合的聚合物载体,解决了上述存在的问题.实验结果表明,碳纳米材料复合后,聚合物载体固载的季鏻盐催化剂的热稳定性和耐溶胀能力得到明显的提高.TG-
以正硅酸乙酯为硅源,通过溶胶凝胶法制备出亲水凝胶.该凝胶被六甲基二硅胺烷修饰后,得到疏水凝胶,超声分散后得到透明喷剂,该喷剂能在载玻片上制得具有超疏水性能的透明涂层.使用接触角测量仪、紫外可见分光光度计、扫描电子显微镜对载玻片上涂层的润湿性、透明度及微观结构进行了表征.结果表明,本实验所制备的涂层静态水接触角为164°.纳米颗粒的尺寸小于100nm,是涂层具有优异透明度的主要原因.涂膜过程为喷涂,
随着能源技术的发展,硝酸盐作为储能介质应用越来越广泛,但是有关熔盐结构研究偏少,特别是杂质离子对混合盐结构和性质的影响,鲜有文献报道.本文以质量比1:1的KNO3/NaNO3混合盐为基础,向其中添加SO42-离子.测量了含杂质混合盐在不同温度的拉曼光谱和高温XRD图谱,考察了SO42-离子对硝酸盐混合物结构的影响.结果表明在熔盐冷凝结晶时SO42-会优先与Na+结合,并且在常温下SO42-以固溶体
活性炭由于具有比表面积高、孔隙结构发达、成本低廉、化学以及热稳定性良好等优点,而成为超级电容器首选电极材料.本研究采用相对简单的制备方法把竹笋壳变废为宝,即把笋壳碳化后,再进行活化处理得到高活性的活性炭,氮气吸脱附测试结果如图l(c)所示,结果表明活性炭样品的比表面积非常大,高达3408m2g-1,平均孔径为2.52nm。以6mol L-1 KOH为电解液,将竹笋壳基活性炭材料组装成超级电容器进行
乙醇作为一种基本的有机化学原料具有广泛的用途.特别是用做燃料乙醇,由于其洁净无污染可以作为替代能源,具有广阔的发展前景;而且全球石油能源价格的上涨,促使了燃料乙醇的消费增长.针对我国乙醇供不应求和醋酸产能过剩这两方面的问题,迫切需要一项新的技术对其进行转化.而醋酸酯化加氢制备乙醇工艺的出现不仅能够增加乙醇的产量,满足日益增长的燃料乙醇需求,而且能够解决我国醋酸产能过剩问题,为醋酸行业的发展提供一个
会议
本文针对中国传统发酵食品历史悠久、品种丰富、特色明显和发展潜力巨大的特点及其存在的问题,以中国传统发酵食品——细菌纤维素(Bacterial Cellulose,BC)为例,阐述了BC的历史、研究现状及其产业化过程中的一些新进展.实例表明利用现代发酵方法提升传统发酵食品技术含量,以及扩大传统发酵食品应用领域是可行的.
随着人们环保意识的增强及对食品安全关注的日益提高,微生物农药因其无公害、无污染、无残留、且不易产生抗药性等特点,近年在研发、登记和应用上都获得了长足的发展.微生物杀菌剂作为微生物农药的二大品种之一,国内外已登记多个产品,且逐步被国外大型农药企业所并购.而对于微生物杀菌剂,中国大型农药企业少有涉足,更未涉足防治素有植物"癌症"之称的土传病害的微生物农药.众所周知,中国的土传病害日益严重,是微生物农药
片状结构V2O5微米球通过两步法合成:第一步是通过借助多元醇介质采用无模板法合成钒的醇盐前驱体,第二步是对前驱体在空气中进行高温煅烧热处理.然而,只对原料乙酰丙酮氧钒进行一步高温煅烧热处理,只能得到纳米棒而得不到微米球.经过煅烧热处理后收集的试样的物相和形貌是通过X-射线(XRD)和扫描电子显微镜(SEM)来进行表征,电化学性能是通过WLAND系统来进行测试.物相和形貌结果显示,两试样的物相都为斜
三相接触线在多相系统中起着关键作用,几十年来源自不同学科背景的各种理论被相继提出以理解其基本物理图像.然而由于缺乏实验支持,争论持续发散.本文利用轻敲模式原子力显微镜(TM-AFM)测量非挥发性液体在低速下(<50nm/s)去湿时后退接触线附近的纳米级液膜形貌.结果表明绝大多数液膜形貌具有很好的线性,也即微观接触角θm与宏观接触角相等.θm随着接触线后退速度增大而减小,从而证明在理论建模中广泛采用
随着各国对柴油的需求量越来越大,环境污染的问题变得越来越严重,所以生产出清洁或超清洁柴油、控制柴油中的硫含量变得越来越重要.目前,加氢脱硫技术是大规模生产超低硫柴油的主要手段,但是常规的加氢脱硫催化剂难以实现柴油的深度或超深度脱硫,因而研制出具有更高活性的加氢脱硫催化剂的意义十分重大.柴油加氢脱硫与提高十六烷值以及芳烃的加氢饱和是生产超清洁柴油的关键.柴油加氢脱硫的研究主要集中在脱除带有空间位阻效