基于金纳米颗粒修饰二硫化钼片层的等离子体增强有机太阳电池

来源 :中国化学会第29届学术年会 | 被引量 : 0次 | 上传用户:spirithero
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  目前研究已证实,基于金属纳米结构在光照下的局部表面等离子体共振效应的光俘获技术是提高有机太阳电池光吸收效率的有效途径[1].金属纳米颗粒是最常用的一种具有等离子体效应的金属纳米结构[2],一方面能够对光起到近场耦合效果,增强活性层中光吸收;另一方面也能够通过对光的散射作用增加光程,从而增强活性层中光吸收.基于此,本文提出了一种创新的空穴传输层,即采用尺寸为20nm的金纳米颗粒修饰二硫化钼片层(MoS2@Au复合物),并将其作为空穴传输层用于有机太阳电池中,利用金纳米颗粒产生的局部表面等离子体共振效应来增加活性层中光吸收进而提高有机太阳电池性能.相比于采用未修饰的二硫化钼片层的电池,采用MoS2@Au复合物作为空穴传输层的电池在短路电流和光电转换效率上分别取得了15.6%和17.3%的提高.这一实验结果也和理论模拟的结果相吻合.
其他文献
钙钛矿太阳电池是目前发展前景最为广阔的杂化太阳电池之一.当前,越来越多的研究者将目光转向平面异质结钙钛矿电池的研究.与含有多孔半导体氧化金属支架层的钙钛矿电池相比,
会议
  噻咯结构由于硅原子的两个外环σ键的σ*轨道与丁二烯部分π*轨道相互作用形成 σ - π *共轭,使得噻咯具有较低的还原电位和LUMO能级、较强的电子流动性和电子亲合势,同
会议
  电荷的传输与转移动力学研究对于更深层次理解染料敏化太阳电池(DSC)的运作机理起着至关重要的作用[1].DSC 是一种多相电化学体系,相与相之间形成多个接触界面,界面之间具
会议
  有机小分子给体因其确定的分子结构及分子量,高纯度及批次间可重复等优点在有机太阳能电池领域越来越受到人们的关注.三苯胺(TPA)由于拥有较好的给电子能力和空穴传输能
会议
人类一直在努力寻求可持续,清洁和高效的能源转化和储存技术,以满足现代社会的能源需求。在电分解水制氢气、金属空气电池、燃料电池等新型清洁能源转化和存储技术中,反应动力学过程迟滞的析氧反应(OER)是制约能源转化效率的关键。设计合成高活性OER电催化剂,理论计算和试验测试相结合明晰OER机制,以提高OER催化效率,具有重的科学意义。基于铁系过渡金属硫化物优异的电催化性能,本论文尝试利用不同策略可控合成
随着催化裂化技术进步,高产气体等催化裂解技术的工业化推广,进入吸收稳定系统的待分离物流中的气体比重明显增加,进料组成发生明显变化,而吸收稳定系统却没有随之配套优化,
  近年来,点击化学以其反应条件简单、速度快,产率高、环境友好、选择性强等诸多优点倍受研究者的青睐,成为目前最为有效和吸引人的一类合成方法,本文通过介绍TCNE、TCNQ和4F-T
会议
  染料敏化太阳能电池(DSSCs)作为传统硅基太阳能电池理想替代产品,以其环境友好、耗能低、易组装以及光电转换效率高等,受到世界范围的广泛关注.作为DSSCs重要组件之一,对电
会议
  本文制备了基于PTB7/ICBA/PC71BM的三元共混体系聚合物太阳能电池.由于ICBA比PC71BM具有更高的LUMO能级,开路电压随着ICBA的加入而逐渐升高.ICBA在PTB7和PC71BM之间起到了
会议
渣油中存在各种不同类型的含硫化合物,它们对渣油深度加工过程以及产品质量的影响很大。深入考察渣油中含硫化合物的结构组成与分布状况,对渣油加工路线的选择及加工工艺的开