论文部分内容阅读
由于多示例学习能够有效处理图像的歧义性,因此被应用于基于内容的图像检索。本文提出一种基于多示例学习的CBIR方法,该方法将图像作为多示例包,基于高斯混合模型和改进的EM算法全自动分割图像,并提取颜色、纹理、形状和不变矩等区域信息作为示例向量生成测试图像包。根据用户选择的实例图像生成正包和反包,使用多种多示例学习算法进行学习,实现图像检索和相关反馈,得到了较好的效果。