Defect-resolved effective majority carrier mobility in highly anisotropic antimony chalcogenide thin

来源 :第八届新型太阳能材料科学与技术学术研讨会 | 被引量 : 0次 | 上传用户:ly0496lf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Majority carrier mobility is one of the most fundamental and yet important carrier transport parameters determining the optimal device architecture and performance of the emerging antimony chalcogenide solar cells.However,carrier mobility measurements based on the Hall effect have limitations for these highly anisotropy materials due to the discrepancy of transport directions under Hall measurement and device operation.Herein,we present a defect-resolved mobility measurement (DRMM) method enabling the evaluation of effective majority carrier mobility from a working device without such limitations.By employing this method,comprehensive information about the carrier transport in representative Sb2S3 and Sb2Se3 solar cells is extracted.Though with preferred[hk1]-crystalline orientation,Sb2S3 and Sb2Se3 still suffer from extremely low carrier mobility and low carrier density respectively,resulting in large bulk resistance and poor carrier collection efficiency.Further crystalline structure analysis discloses that crystalline defects like dislocations may significantly constrain carrier transport in these low-dimensional materials.These results suggest that p-i-n device architecture with fully depleted absorber is a promising optimization approach for further efficiency advances of antimony chalcogenide solar cells.
其他文献
太阳能电池材料中,铜锌锡硫硒(Cu2ZnSn(S,Se)4,CZTSSe)因为其安全环保、原料储量丰富的特点有望成为替代铜铟镓硒(CIGS)和碲化镉(CdTe)太阳能电池的吸收层材料.溶液法是一种可以低成本和大面积制备铜锌锡硫硒薄膜太阳能电池吸收层材料的方法,该方法可以通过溶液组分来调控前驱体膜的组成,而前驱体膜的组成决定了吸收层晶粒的生长路径并进而影响吸收层的光电性能.这里我们以CuCl,Zn(
近年来铜锌锡硫(CZTSSe)薄膜太阳能电池的效率停滞不前,阻碍其发展的关键因素为开路电压损失(VOC.def)大.采用离子半径较大的Ag+取代Cu+形成银合金化的铜锌锡硫((Agx,Cu1-x)2ZnSn(S,Se)4,0<x<1,ACZTSSe)吸收层可以有效减少Cu-Zn无序并提升电池的开路电压(VOC).但是,目前已报道的ACZTSSe薄膜电池与未合金化的世界纪录器件相比仍然表现出高VOC
Polyimide (PI) is the most suitable substrate for flexible CuIn(S,Se)2 (CISSe) solar cell.However,PI has not been used in solution-processed approach because PI cannot tolerate the high temperature of
开路电压损失(Voc-def)大是制约铜锌锡硫(Cu2ZnSn(S,Se)4,CZTSSe)薄膜太阳能电池效率提高的主要因素,探究电压损失的关键原因对进一步提高电池效率至关重要。多元化合物CZTSSe薄膜通常由金属、金属硫(硒)化物或者由它们混合组成的预制膜通过高温硫化/硒化反应获得,其光电性质与预制膜的组成及薄膜生长过程密切相关。而通过溶液法制备CZTSSe,预制膜的组成必然与前驱体化合物在溶液
会议
用1,2-乙二硫醇和1,2-乙二胺混合溶剂溶解金属单质制备Cu2ZnSnS(e)4(CZTSSe)吸收层薄膜,可以成功的用溶液法制备出较高效率的CZTSSe太阳能电池[1].但是与肼溶剂相比,基于此混合溶剂制备的CZTSSe吸收层薄膜仍存在结晶质量较差的问题.吸收层底部较厚的小晶粒层和表面较多的孔洞会明显降低CZTSSe光伏器件的能量转换效率[2,3].在本研究中,我们在CZTSSe吸收层薄膜上表
Cu2ZnSn(S,Se)4(CZTSSe)由于其组成元素价格低廉、对环境友好和光电性能优异而成为一种有前途的光伏材料[1].然而,CZTSSe电池中大量的界面缺陷和体缺陷严重制约着其转换效率的提升,尤其是开路电压.近年来,通过原子层沉积技术生长的氧化铝(ALD-Al2O3)已经被应用在CZTSSe薄膜太阳电池中去改善器件性能、提高转换效率[2].但是,Al2O3钝化层对高效CZTSSe薄膜太阳电
本文将CZTSSe光伏薄膜应用于忆阻器,研究了Mo背电极上制备的CZTSSe薄膜的忆阻性能,发现了CZTSSe薄膜具有共存的双极阻变特性和负阻微分效应,并提出了其阻变行为机理模型.研究表明,Cu/(Zn+Sn)比为0.82条件下的CZTSSe薄膜电阻开关比(HRS/LRS)为27.5,具有较好的非易失性电阻存储特性,其室温下共存的阻变特性与负阻微分效应主要源于外电场作用下肖特基势垒调制的Cu导电丝
By introducing Al-doped ZnO (AZO) layer,the thickness of MoS2 at the back interface of Mo/CZTS is effectively suppressed and the voids are eliminated.The scientific mechanism of improving the back int
The Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) semiconductor is a compelling emerging light harvesting materials for low-cost,environment-benign,and high-efficiency thin-film photovoltaics.The highest power co