木质素高效催化转化制备烷基酚的研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:ryuichist
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
木质素是自然界中唯一可再生的芳香有机碳源,有望成为石油和煤等化石资源的替代品。当前,制浆造纸工业和木质纤维素酶解工业副产大量木质素,但仅有1-2wt.%的木质素被应用于粘合剂、分散剂、乳化剂等化学品,其它木质素一直未得到合理利用。本文聚焦于乙醇体系中酶解木质素和碱木质素的催化转化工艺并对其解聚路径展开细致研究,力求实现木质素更加有效地催化解聚为高附加值烷基酚产品,切实加速木质素催化转化的商用进程。
  首先,以MoO3为催化剂,研究了木质素模型化合物愈创木酚在超临界乙醇中选择性脱氧制备烷基酚的反应。通过气相色谱和气相色谱质谱联用仪对产物进行了定性定量分析。愈创木酚转化率和烷基酚选择性分别达99%和86%。MoO3在低碳醇溶剂中能表现出较好的催化活性,乙醇被确认是最有效的反应溶剂。进一步,我们发现邻苯二酚是愈创木酚转化的中间体,它能被直接烷基化生成乙基酚。乙基酚α碳上的活泼氢被溶剂衍生的甲基或乙基连续取代后可得到一系列高级烷基酚。在X射线衍射、透射/扫描电镜、拉曼等表征手段的协助下,氧化钼表面形成的一种带有Mo5+的MoOxCyHz相被证实是该反应的活性组分。
  其次,考察了超临界乙醇中氧化钼催化剂应用于酶解木质素催化解聚体系的活性。可识别的芳香产物主要为乙基酚、异丙基酚和叔丁基酚等多种烷基酚。乙醇对酶解木质素具有一定的溶解度,其溶解性能明显优于去离子水。在300℃超临界乙醇中反应6h,可识别的芳香产品收率达239mg/g木质素,其中烷基酚占52wt.%。进而,利用等体积浸渍法,Ce、Cu、Mg、P和Ni被作为助剂修饰MoO3催化剂。X射线光电子能谱和拉曼分析显示Ce在促进活性组分生成和抑制催化剂积碳方面具有显著作用。基于模型化合物实验和木质素转化结果,认为溶解的酶解木质素或非催化乙醇解得到的酶解木质素片段能够克服传质阻力有效地与催化剂表面接触,MoO3选择性断裂它们结构中相邻的Ar-O键,从而形成邻苯二酚类中间体,其再通过烷基化和异构化生成大量烷基酚。
  再次,将多种硫酸盐引入到三氧化钼催化体系当中对碱木质素的解聚行为展开研究。借助扫描电镜、红外光谱、核磁共振氢谱及紫外吸收光谱对碱木质素和酶解木质素实施了细致的表征对比,发现碱木质素中木质素含量较低、其具有更大的颗粒尺寸和分子量、结构内的醚键含量较少,且在乙醇中的溶解度极为有限。Fe2(SO4)3被证实是MoO3解聚碱木质素最好的助催化剂,300℃乙醇中反应6h后,碱木质素解聚的可识别芳香产品收率达到127mg/g木质素,其中烷基酚占73wt.%。进而考察了反应温度、时间和硫酸铁加入量对解聚效果的影响,并对不同催化体系下的反应残渣和产品组成进行了详细分析。硫酸铁在催化过程中是不稳定的,部分铁盐会溶解于乙醇中,它们被推测可作为液相催化剂初步解聚碱木质素为稍短的木质素片段和少量小分子初级产品,这些产物能简单地在固相三氧化钼表面继续发生加氢脱氧反应。
  最后,开展了木质素在温和反应条件下的解聚研究。受上述液相催化剂的启发,该部分设计了高浓度氯化锌乙醇溶液中酶解木质素选择性催化解聚为烷基酚的新工艺。ZnCl2的加入可有效提升酶解木质素在乙醇中的溶解度。于200℃(较之前工作的反应温度降低100℃)、无外加氢压的条件下,酶解木质素在40wt.%ZnCl2乙醇溶液中转化得到的可识别芳香产品收率达304mg/g木质素,其中68wt.%为烷基酚,值得注意的是,仅2,6-二叔丁基-4-乙基酚的占比便达38wt.%。凝胶渗透色谱分析表明木质素重均分子量从4333g/mol减少为580g/mol。反应温度是限制木质素解聚过程中脱氧和烷基化的重要因素,反应时间则主要作用于木质素解聚产品的连续烷基化。在20mL40wt.%氯化锌乙醇溶液中,200-500mg酶解木质素均可实现有效转化。高浓度氯化锌乙醇溶液内可供Zn2+配位的乙醇数较少,Zn2+能与木质素醚键中拥有孤电子对的氧原子配位并使其活化。模型化合物实验表明,本体系中相邻的C-O键及Ar-O-alkyl键更容易被断裂,它们的断裂主要通过形成-OH来实现。
其他文献
随着微电子技术不断发展,各种各样的便携式低功耗电子设备进入了人类日常生活及工业生产活动中。由于传统的化学电池寿命有限,对于便携式低功耗电子设备而言其有限的能量供给问题日趋严峻。例如对于无线终端如智能家居、可穿戴设备,和对于难以触及的电子设备如人体植入设备、危险环境中的传感器而言,其定期供电维护是一项繁琐且成本高昂的工作。此外,化学电池较大的体积也阻碍了电子系统的微型化,同时日益增长的电池用量对人类
学位
水电站运行安全事故是全球范围内严重威胁人民生命和财产安全的隐患。如何防患于未然,针对各类安全问题做好水电站应对措施,是本研究需要解决的关键问题。鉴于此,本研究针对水电站运行期间存在的泄洪诱发振动安全问题、下游水力安全问题和引尾水系统安全问题提取调控安全约束,分别建立优化调控模型并从时间、空间角度给出相应调控策略。基于上述调控策略提出水电站运行调控准则,并以此为基础开展耦合多安全约束的水电站运行多目
学位
工业革命以来,全球人为成因活性氮排放成倍增加,导致大气氮沉降持续增加,造成一系列对生态环境的负面影响。大气氮沉降的通量和化学组成是空气氮污染物减排策略和大气氮沉降效应评估的重要科学依据。然而,由于大气氮沉降的化学组成较复杂,且存在较大的时空变异,直接进行大气氮沉降的高时空分辨率采样观测和化学分析成本高、难度大。藓类植物由于一直被认为氮素来源主要为大气沉降,且形态结构较为简单、地理分布广,其氮含量和
部分透热精馏是一种精馏节能技术,其特点是只选择一块或几块塔板进行透热操作。与每块塔板上均设置换热器的完全透热精馏相比,既保证了较高的热力学效率,也使设备结构更易于实现。因此,部分透热精馏具有巨大的应用前景,其相关研究日益受到广泛的重视。  本文提出了带有侧线采出回流的中间再沸精馏操作。该操作是在提馏段塔板上设置中间再沸器,侧线采出换热塔板上的平衡气相,再将其从采出板上方的适当位置回流到塔内,可在保
使用电催化尿素氧化反应(UOR)进行尿素辅助电解水和开发高效的电催化析氧(OER)催化剂都能降低产氢体系的电位,提高产氢效率。目前制备的Ni金属及其合金、Ni(氢)氧化物及其复合物等催化剂进行UOR反应时仍存在过电位过高、稳定性差、选择性低等问题,限制了其实际应用。此外,Ni基催化剂的UOR催化机制因体系不同活性位点尚存在争议,有待进一步深入研究。此外,CoFe催化剂进行OER反应时具有较高的过电
学位
随着线上零售行业竞争的日益激烈和消费者对线上购物体验需求的不断增加,现有营销模式难以持续有效吸引消费者,越来越多的电子商务网站和卖家尝试通过引入新的营销模式适应不断变化的商业环境。众多营销模式中,电子商务直播通过整合电子商务的消费属性和直播的用户快速获取能力而迅速成为当前主流的商业化营销模式。虽然电子商务直播不断得到实践推广,但其对线上消费行为的驱动作用仍缺乏理论支撑和实证支持,理解电子商务直播对
学位
热固性树脂基复合材料具有许多优异的性质,如耐高温、硬度大、耐化学试剂、尺寸稳定性好等,广泛应用于防护涂料、胶粘剂、浇铸材料、增强塑料等领域。热固性树脂基复合材料的性能与其分子结构密切相关,而分子结构在很大程度上取决于树脂体系以及与固化过程有关的固化温度、固化时间、固化程度等因素。所以,为了开发高性能热固性树脂基复合材料,必须对热固性树脂的固化过程进行有效监测,研究树脂体系和固化工艺对树脂固化过程和
学位
蛋白质溶液在固体基材表面发生的非特异性吸附行为被称为蛋白质污染,广泛存在于生物传感器、生物植入材料、海洋船舶涂层、膜分离材料等表界面。为降低蛋白质的非特异性吸附,本文利用寡肽、天然聚多糖、糖蛋白等生物材料设计并协同构筑了多种高性能的抗蛋白污染表面,具体如下:  (1)寡肽表面:设计合成了相同链长的两性离子寡肽(CRERERE)和两亲性寡肽(CYSYSYS),并通过自组装方式修饰在金芯片表面,抗蛋白
开发利用生物质资源是解决当前以石油为主的能源枯竭以及环境污染问题的一个重要途径。木质素生物质快速热解得到的生物原油改性后有望取代石油来提供燃料和生产高附加值化学品。生物原油的主要成分为酚类化学物,催化加氢脱氧是改性生物原油的有效手段,近年来备受关注。目前,加氢脱氧体系通常采用模型化合物,如苯酚,苯甲醚等含有-OH或-OCH3代表性官能团的化合物为基底来筛选催化剂和研究反应机理。目前大部分研究是基于
乙二醇(EG)是合成聚酯的重要原料,市场潜力巨大。开发以煤基合成气为原料经草酸二甲酯(DMO)加氢生产EG的工艺,符合国家发展的重大战略需求。同时,DMO初步加氢产物乙醇酸甲酯(MG)是生产可降解材料聚乙醇酸的重要原料。实现MG的高效选控合成,可提升此工艺的技术经济性和抗风险能力。开发高效稳定的Cu基DMO加氢催化剂,选控合成EG和MG是该工艺研究的关键与难点。本论文针对DMO加氢反应工业过程中反