论文部分内容阅读
汽油压燃(GCI)是一种极具发展前景的低排放、高效率燃烧技术。然而,对于发动机低负荷工况,由于汽油燃料反应活性较低,在缸内较低的热力学状态下着火滞燃期较长、燃烧相位滞后,导致燃烧循环波动增加,甚至出现失火/难以着火的现象。对于发动机工作在大负荷工况,预混压燃方式提高了燃烧速率,使得燃烧过程放热集中,但这也造成了发动机工作粗暴,甚至发生爆震燃烧。因此,低负荷燃烧稳定性和冷起动,以及大负荷粗暴/爆震燃烧是GCI燃烧面临的两大难题。本文针对上述问题开展了提高小负荷工况,包括冷起动工况,燃烧稳定性的策略研究,以及大负荷爆震机理、爆震特征和优化控制的策略研究。
首先,针对稳态工况开展了不同负荷下内部EGR率对GCI发动机燃烧特性的影响研究,着重讨论了内部EGR引入所带来的加热效应与稀释及热容效应之间的竞争关系,并通过较高内部EGR率实现了低油耗的GCI稳定怠速。研究结果表明,在部分负荷工况,当内部EGR率较低时,加热效应对燃烧速率起主导作用;而当内部EGR率较大时,稀释与热容效应的作用则凸显出来,对燃烧起到抑制作用。但在怠速工况下,燃油供给量非常低,加热效应在影响燃烧速率和燃烧起始时刻时总是占主导的,即高内部EGR率有利于提高GCI怠速工况的燃烧速率并提前其着火时刻,对提高燃烧稳定性有明显效果。试验采用高内部EGR率和合理的喷油策略,实现了每循环4.98mg燃油消耗的稳定怠速运行,此单位排量油耗与目前商用发动机基本持平。
其次,基于该高EGR率的控制策略,针对更低温度边界条件的工况开展了冷怠速和冷起动的技术策略研究。结果表明,NVO喷射策略是实现GCI发动机冷起动的最佳喷射策略。缸内初始热力学状态、未燃混合气活性和缸内热积累速率是GCI发动机实现冷起动的决定性因素,NVO喷射策略使得缸内燃料发生重整反应,增加了燃料反应活性,从而提升了缸内的热积累速率,进而加快了冷起动的过程。但在冷却水和进气温度均为常温时,缸内化学反应和热积累的缺失,导致了发动机起动失败;在冷边界条件下通过进气预热提高发动机着火能力,可实现GCI的快速冷起动。
然后,基于统计学方法、小波变换和燃烧分析等手段,开展了GCI的爆震特性试验研究。结果表明,缸内压力震荡在GCI燃烧模式中是一种普遍存在的现象,即使正常燃烧工况也存在轻微的压力震荡。与SI燃烧模式中随机的末端混合气自燃产生的压力震荡不同,GCI压力震荡是由于燃烧室内局部燃烧速率过快导致的,不具有明显的随机性,并且可通过喷油时刻对震荡强度进行调控;由于燃烧温度的不同,相同阶次的GCI压力震荡频率明显低于SI压力震荡频率。此外,通过两次喷射策略可对缸内燃油分布进行调节,适当比例的燃油预混使得GCI具有较优的燃烧过程,其燃烧稳定性、扭矩输出也有明显提高;但过大的预喷比例会带来GCI的“过度预混”,从而导致爆震的不可控,即无法通过推迟主喷时刻来抑制爆震。在这种高预混工况下,若主喷时刻较晚,则可能因为循环波动的增加而导致放热过于集中、爆震强度极高的极端燃烧循环出现,对发动机造成较大的破坏。
最后,基于GCI发动机大负荷工况,开展了喷油压力、燃油浓度、负气门重叠角、多次喷射和阿特金森循环对发动机性能和燃烧过程的影响研究。结果表明,喷油压力、喷油时刻和喷油量对GCI燃烧起着至关重要的作用,喷油压力过低燃料与空气的混合能力较差,导致平均有效压力较低,同时循环波动较大;适当提高喷油压力有利于改善燃料与空气的混合过程,平均有效压力提升,同时循环波动降低;但喷油压力过高容易造成燃料的“过度混合”,使得燃烧过程对喷油时刻的变化异常敏感,燃烧极易变得粗暴或失稳。负气门重叠角的改变对进气过程中的扫气效果和缸内残余废气量具有直接影响,但在大负荷工况为了保证足够的动力输出不宜采用过高的负气门重叠角;同时,为了避免扫气效果过强而导致着火滞燃期过长,在大负荷GCI工况可采用轻微或无负气门重叠角的配气相位。对于两次喷射而言,由于改善了缸内燃油分布,减少了局部过浓区域的存在,两次喷射在性能和循环波动的表现上均明显优于单次喷射,并且预喷比例同样不宜过大以避免燃烧不可控。在两次喷射基础上采用阿特金森循环可进一步提高发动机的性能,即在已优化的喷油策略基础上,阿特金森循环带来的收益可与之叠加。阿特金森循环对GCI发动机性能的提升一方面在于阿特金森循环使发动机有效压缩比降低,从而降低了压缩负功,同时燃烧的膨胀做功还能有效保持,从而提升了循环的做功量。但采用阿特金森循环后缸内热力学状态有所降低,需要更加精细地控制喷油时刻以避免燃烧发生失稳。
全文针对GCI燃烧稳定性和GCI爆震燃烧过程,探究了内部EGR中加热效应和稀释及热容效应的竞争关系,提出了实现GCI稳定怠速的技术策略;结合缸内燃料重整和进气预热,实现了快速冷起动过程;分析了GCI爆震和SI爆震的宏观特征和燃烧机制,提出了多次喷射结合阿特金森循环提高大负荷性能的技术策略,为GCI发动机燃烧过程优化和工程实际应用提供了重要参考价值。
首先,针对稳态工况开展了不同负荷下内部EGR率对GCI发动机燃烧特性的影响研究,着重讨论了内部EGR引入所带来的加热效应与稀释及热容效应之间的竞争关系,并通过较高内部EGR率实现了低油耗的GCI稳定怠速。研究结果表明,在部分负荷工况,当内部EGR率较低时,加热效应对燃烧速率起主导作用;而当内部EGR率较大时,稀释与热容效应的作用则凸显出来,对燃烧起到抑制作用。但在怠速工况下,燃油供给量非常低,加热效应在影响燃烧速率和燃烧起始时刻时总是占主导的,即高内部EGR率有利于提高GCI怠速工况的燃烧速率并提前其着火时刻,对提高燃烧稳定性有明显效果。试验采用高内部EGR率和合理的喷油策略,实现了每循环4.98mg燃油消耗的稳定怠速运行,此单位排量油耗与目前商用发动机基本持平。
其次,基于该高EGR率的控制策略,针对更低温度边界条件的工况开展了冷怠速和冷起动的技术策略研究。结果表明,NVO喷射策略是实现GCI发动机冷起动的最佳喷射策略。缸内初始热力学状态、未燃混合气活性和缸内热积累速率是GCI发动机实现冷起动的决定性因素,NVO喷射策略使得缸内燃料发生重整反应,增加了燃料反应活性,从而提升了缸内的热积累速率,进而加快了冷起动的过程。但在冷却水和进气温度均为常温时,缸内化学反应和热积累的缺失,导致了发动机起动失败;在冷边界条件下通过进气预热提高发动机着火能力,可实现GCI的快速冷起动。
然后,基于统计学方法、小波变换和燃烧分析等手段,开展了GCI的爆震特性试验研究。结果表明,缸内压力震荡在GCI燃烧模式中是一种普遍存在的现象,即使正常燃烧工况也存在轻微的压力震荡。与SI燃烧模式中随机的末端混合气自燃产生的压力震荡不同,GCI压力震荡是由于燃烧室内局部燃烧速率过快导致的,不具有明显的随机性,并且可通过喷油时刻对震荡强度进行调控;由于燃烧温度的不同,相同阶次的GCI压力震荡频率明显低于SI压力震荡频率。此外,通过两次喷射策略可对缸内燃油分布进行调节,适当比例的燃油预混使得GCI具有较优的燃烧过程,其燃烧稳定性、扭矩输出也有明显提高;但过大的预喷比例会带来GCI的“过度预混”,从而导致爆震的不可控,即无法通过推迟主喷时刻来抑制爆震。在这种高预混工况下,若主喷时刻较晚,则可能因为循环波动的增加而导致放热过于集中、爆震强度极高的极端燃烧循环出现,对发动机造成较大的破坏。
最后,基于GCI发动机大负荷工况,开展了喷油压力、燃油浓度、负气门重叠角、多次喷射和阿特金森循环对发动机性能和燃烧过程的影响研究。结果表明,喷油压力、喷油时刻和喷油量对GCI燃烧起着至关重要的作用,喷油压力过低燃料与空气的混合能力较差,导致平均有效压力较低,同时循环波动较大;适当提高喷油压力有利于改善燃料与空气的混合过程,平均有效压力提升,同时循环波动降低;但喷油压力过高容易造成燃料的“过度混合”,使得燃烧过程对喷油时刻的变化异常敏感,燃烧极易变得粗暴或失稳。负气门重叠角的改变对进气过程中的扫气效果和缸内残余废气量具有直接影响,但在大负荷工况为了保证足够的动力输出不宜采用过高的负气门重叠角;同时,为了避免扫气效果过强而导致着火滞燃期过长,在大负荷GCI工况可采用轻微或无负气门重叠角的配气相位。对于两次喷射而言,由于改善了缸内燃油分布,减少了局部过浓区域的存在,两次喷射在性能和循环波动的表现上均明显优于单次喷射,并且预喷比例同样不宜过大以避免燃烧不可控。在两次喷射基础上采用阿特金森循环可进一步提高发动机的性能,即在已优化的喷油策略基础上,阿特金森循环带来的收益可与之叠加。阿特金森循环对GCI发动机性能的提升一方面在于阿特金森循环使发动机有效压缩比降低,从而降低了压缩负功,同时燃烧的膨胀做功还能有效保持,从而提升了循环的做功量。但采用阿特金森循环后缸内热力学状态有所降低,需要更加精细地控制喷油时刻以避免燃烧发生失稳。
全文针对GCI燃烧稳定性和GCI爆震燃烧过程,探究了内部EGR中加热效应和稀释及热容效应的竞争关系,提出了实现GCI稳定怠速的技术策略;结合缸内燃料重整和进气预热,实现了快速冷起动过程;分析了GCI爆震和SI爆震的宏观特征和燃烧机制,提出了多次喷射结合阿特金森循环提高大负荷性能的技术策略,为GCI发动机燃烧过程优化和工程实际应用提供了重要参考价值。