基于区块链的多域环境访问控制机制研究

来源 :西安工业大学 | 被引量 : 0次 | 上传用户:zhangdeyu520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
越来越多的机构、企业及其部门之间逐渐实现互联互通,形成了一个多域环境。多域环境有助于跨域共享信息资源,允许成员进行跨域授权、跨域访问等操作,也方便管理者对用户及权限等进行统一管理。然而,由于多域环境的复杂性,来自不同域的用户数量众多,权限复杂多样,容易发生授权错误、身份伪造和权限伪造等安全问题,从而造成非法访问。因此,多域环境中的各类用户在域内或跨域访问资源时,必须采用合适的访问控制机制,以避免非法访问。针对多域环境的特点及其访问控制面临的问题,本文从以下方面开展了研究工作:首先,在访问控制模型设计时,会面临角色命名冲突、平台-域管理冲突、域间管理冲突和跨域共享困难等问题。为解决这些问题,研究了一种基于角色的系统间跨域访问控制模型(RBAC-IC)。该模型针对多域环境,在基于角色访问控制(RBAC)的基础上进行改进,通过形式化定义的方式设计而成。RBAC-IC将角色分为抽象角色和具象角色,并拥有一套专门的运作流程。该模型具有允许角色重名、平台-域隔离管理、域间隔离管理和细粒度跨域共享等四个特性。通过建立安全违反公式进行安全性分析,表明RBACIC可以安全运行。其次,在线上多域环境平台或系统中,采用中心化的管理模式可能会导致身份认证、授权和访问控制等过程中的一系列安全挑战,例如身份、权限和资源的伪造或篡改。针对这些问题,研究了一种基于区块链的多域环境访问控制架构。该架构将多域环境置于联盟链中,使用分布式身份标识符(DID)作为用户的身份标识,用户使用持有的公私钥对进行平台内的操作。在架构中,通过颁发可验证凭证的方式为用户授予权限和发布资源,并设计智能合约自动执行授权、访问控制等流程。该架构能够解决多域环境数据异构、身份和权限易篡改等问题,使访问控制过程更加安全,有效防范多域环境中各类非法操作。最后,设计了基于区块链的多域作战管理信息平台,旨在提高多域作战中信息和操作的保密性和安全性。该平台采用RBAC-IC作为底层的访问控制模型,通过访问控制架构保证平台访问控制各流程的安全性。根据多域作战背景和区块链特点,设计了平台的总体架构,以及DID Document、可验证凭证等的结构。平台以区块链和智能合约为底层支撑,提升了平台的去中心化程度和安全性。利用Petri网模型对平台进行了分析,结果表明该平台可以安全地运行。并对平台进行功能和性能测试,结果显示平台可以正常且高效地运行。所提出的RBAC-IC和访问控制架构在该平台的实际应用,证明了两者的合理性。
其他文献
随着无人机行业的快速发展,无人机检测技术已经成为低空领域的研究热点。然而低空背景复杂多变,远距离探测时无人机目标特征少、小目标数量占比大,传统的检测方法难以提取到有效的目标特征信息。因此,针对上述问题,本文开展基于改进YOLOv5的低空无人机检测方法研究,旨在提高低空无人机小目标的检测性能。论文的主要研究内容如下:针对低空无人机目标检测领域数据量不充足的问题,本文构建了特定低空无人机目标数据集。首
学位
热红外目标跟踪技术是自动目标识别(ATR)领域的研究热点。热红外图像缺乏清晰的纹理和轮廓特征,传统的跟踪方法难以提取到有效的目标表征信息,在跟踪任务中常会受到相似物、遮挡物的干扰,出现跟踪错误。针对以上问题,本文基于表征学习理论,提出了针对热红外目标跟踪的深度学习方法。主要工作如下:(1)针对热红外目标在跟踪过程中受到相似物干扰的问题,设计融合注意力机制的分层预训练特征提取网络。深入分析了热红外目
学位
随着人工智能的蓬勃发展,智能化战争已经来临,不断提高军事训练的科技感和智能度,提升军事训练实战化水平成为我们必须关注的重要课题。靶标体系研究在军事研究领域具有举足轻重的地位,靶即为侦查打击对象,标即提供测试值。本课题来源于中国兵器工业试验测试研究院所规划靶标体系研究中的子课题“基于人工智能的人形靶等效毁伤感知与评估”。针对传统的靶场训练中靶标感知毁伤信息不及时,人工参与度强,训练成本高等问题,本课
学位
科技创新推动着社会生活不断的发展前进,人工智能使得人类的生产生活方便快捷。计算机视觉技术的出现更是加速了人工智能领域的发展,作为其重要分支之一的人体姿态估计技术,目前已在医疗、交通、军事等各个领域有着广泛的应用。在军事装备的智能化发展中,人体姿态估计算法为战场态势感知、实时精准打击提供了一定的技术支持。展开人体姿态估计算法的研究,对于军事行动指挥、国防安全保障有着重要的意义。但由于军事环境复杂,存
学位
盖革模式雪崩光电二极管(Geiger Mode Avalanche Photon Diode,GM-APD)阵列激光雷达是一种新型的非扫描式的光子计数雷达,可以响应单光子级能量的回波信号,具有极高的探测灵敏度,使得探测微弱信号成为可能,已被广泛应用于巡航制导、地形测绘、水下探测等领域。但由于GM-APD是概率型器件且激光在介质中具有快速衰减的特性,导致探测到的回波信号过于稀疏,需要大量累计才能恢复
学位
随着精密光学元件制造技术的快速发展,大口径光学元件在国家各项重大科学工程中被广泛应用,随之对大口径光学元件面形检测技术提出更高的要求,现有的光学元件检测技术很难同时满足大口径、高精度的检测需求。子孔径拼接是一种高精度、低成本的面形检测方法,它使用小口径标准光学元件对大口径元件进行检测,降低检测难度的同时具有干涉测量的高精度优势,可提高横向分辨率,获得波面中频误差信息。论文基于子孔径拼接的大口径平面
学位
碳化硅铝基(SiCp/Al)复合材料具有低密度、高比强度、低膨胀系数、耐磨损、耐腐蚀等优点,在电子封装、航空航天、汽车等领域应用前景广阔。然而采用传统的机械加工方法加工存在效率低、刀具磨损严重、易崩裂等问题,为实现SiCp/Al复合材料的高效高质量加工,本文提出电弧放电-电解组合加工的方法。具体研究内容及结果如下:首先,基于铜、45钢、石墨及钨铜合金4种材料电极,开展了SiCp/Al复合材料的电弧
学位
微光学元件是一种常见的小型化光学元件,近年来,随着其应用范围的不断扩大,微光学元件的产量和品种也不断增加,因此,微光学元件三维形貌的检测也变得愈发重要。数字全息技术凭借无损测量、全视场成像、实时测量等优点被广泛的应用在微光学元件形貌检测领域,然而传统的数字全息技术无法测量台阶这样相邻点之间的光程差超过激光器波长的微光学元件,而双波长数字全息技术可有效解决该问题,故本文研究双波长数字全息法微光学元件
学位
随着无人机技术的发展,对无人机的开发应用也逐渐展开。因单个无人机存在能量、搭载量和灵活性等诸多限制,多无人机组网技术也成为了新的研究热点。而在FANETs中,路由协议是网络的核心,它决定了无人机节点之间的通信质量和网络性能。因此本文对路由协议在FANETs网络中的应用进行了部分研究。针对于无人机拓扑变化频繁的情况,固定的消息发送周期难以及时更新网络链路与拓扑变化的问题,首先,对OLSR协议进行消息
学位
GM-APD(Geiger-Mode of Avalanche Photo diodes)阵列激光雷达因其能耗低、探测距离远等优势在军事目标探测领域成为研究热点。针对目前激光雷达目标探测图像重构计算复杂度高、耗时长的问题,本文研究了激光雷达图像重构技术,选取多核DSP作为图像重构处理硬件平台,将本文所提重构算法在多核DSP上进行并行设计与实现,并优化了代码和存储器性能,提高了图像重构的处理速度。具
学位