论文部分内容阅读
当前,快速宽带射频频谱检测成为现代通信和信息处理的一项重要的技术,尤其在民用、军用领域以及科学研究中有着重要的战略地位和作用。随着雷达、电子战、射电天文、无线通信以及卫星通信的发展,对于微波的工作频率的要求也越来越高。然而快速高频信号的频率截获是非常困难的,常规的电子技术无法实现对超宽带的快速射频信号频率的检测和分析。因此以微波光子学为基础的快速的宽带射频频谱测量技术成为近年来的研究热点和难点。其高速率、高灵敏度、低损耗、大带宽、抗干扰能力强等优点将成为未来信息技术研究的重要发展方向。
下变频是一种将高频信号转化成中低频信号进行分析处理的技术,以减少在高频下对电子技术及系统的苛刻条件。本文进行了一种实现下变频关键技术方案的研究—基于光纤环路的射频信号的实时检测。在宽带射频信号检测中,可采用光频率梳与加载射频信息的光载波信号进行拍频,将整个频谱分割成多个小的频段,然后再通过下变频技术进行宽带射频信号的相干检测。在对频谱分割的方法中,通过产生光学频率梳再通过可调谐滤波器的方案,对滤波器的精度要求比较高。因此,实验中提出一种直接生成频率扫描激光器的方法用来分割频谱,以及基于光混频器的相干接收机来实现下变频技术。本文主要的工作内容如下:
1、通过理论分析提出一种基于声光调制直接生成频率扫描激光器的方案,该激光器采用环形腔体结构,具有扫频速度快、扫频精度高、信噪比好等特点。阐述了原理并进行理论推导、仿真分析、实验验证。
2、对现有的频率扫描激光器进行优化,包括扫频激光器的腔长、EDFA、声光调制频率等参数对生成的频率扫描激光器平坦度、信噪比的影响。通过分析激光器的信噪比和掺铒光纤放大器中掺铒光纤的长度等参数对频率扫描激光器性能的影响,进行仿真和实验实现最优化。在实验中,当FPGA注入的外调制信号为脉宽200ns,周期为8μs的脉冲信号时,实现了负向0.3nm范围内的频率扫描。
3、实现90°混频器搭建的下变频系统进行相干检测,考虑到信噪比、增益的影响,实现了一种基于微波光子学的超宽带扫描射频接收机,并通过仿真结果进行分析和验证。
本文搭建的扫频激光器系统以及相干检测系统成本较为低廉并且结构较为简单,实现了初步的效果,为频率扫描、射频检测方案提供了新思路。基于微波光子学的微波频谱测量方面的研究工作正处于高速发展阶段,进行相关的研究和创新具有重大的现实意义和价值。
下变频是一种将高频信号转化成中低频信号进行分析处理的技术,以减少在高频下对电子技术及系统的苛刻条件。本文进行了一种实现下变频关键技术方案的研究—基于光纤环路的射频信号的实时检测。在宽带射频信号检测中,可采用光频率梳与加载射频信息的光载波信号进行拍频,将整个频谱分割成多个小的频段,然后再通过下变频技术进行宽带射频信号的相干检测。在对频谱分割的方法中,通过产生光学频率梳再通过可调谐滤波器的方案,对滤波器的精度要求比较高。因此,实验中提出一种直接生成频率扫描激光器的方法用来分割频谱,以及基于光混频器的相干接收机来实现下变频技术。本文主要的工作内容如下:
1、通过理论分析提出一种基于声光调制直接生成频率扫描激光器的方案,该激光器采用环形腔体结构,具有扫频速度快、扫频精度高、信噪比好等特点。阐述了原理并进行理论推导、仿真分析、实验验证。
2、对现有的频率扫描激光器进行优化,包括扫频激光器的腔长、EDFA、声光调制频率等参数对生成的频率扫描激光器平坦度、信噪比的影响。通过分析激光器的信噪比和掺铒光纤放大器中掺铒光纤的长度等参数对频率扫描激光器性能的影响,进行仿真和实验实现最优化。在实验中,当FPGA注入的外调制信号为脉宽200ns,周期为8μs的脉冲信号时,实现了负向0.3nm范围内的频率扫描。
3、实现90°混频器搭建的下变频系统进行相干检测,考虑到信噪比、增益的影响,实现了一种基于微波光子学的超宽带扫描射频接收机,并通过仿真结果进行分析和验证。
本文搭建的扫频激光器系统以及相干检测系统成本较为低廉并且结构较为简单,实现了初步的效果,为频率扫描、射频检测方案提供了新思路。基于微波光子学的微波频谱测量方面的研究工作正处于高速发展阶段,进行相关的研究和创新具有重大的现实意义和价值。