【摘 要】
:
多目标与超多目标优化问题广泛存在于现实世界当中,处理好这些问题具有重要的现实意义。然而,这些问题具有多个需要被同时优化且可能相互间存在冲突的目标函数,导致传统的数学方法很难进行处理。进化算法是一种基于种群的启发式算法,具有较强的搜索能力,能够解决很多传统方法无法解决的优化问题,已被广泛用于求解多目标与超多目标优化问题。近年来,为处理好超多目标优化问题,学术界提出了大量超多目标优化算法(Many-o
论文部分内容阅读
多目标与超多目标优化问题广泛存在于现实世界当中,处理好这些问题具有重要的现实意义。然而,这些问题具有多个需要被同时优化且可能相互间存在冲突的目标函数,导致传统的数学方法很难进行处理。进化算法是一种基于种群的启发式算法,具有较强的搜索能力,能够解决很多传统方法无法解决的优化问题,已被广泛用于求解多目标与超多目标优化问题。近年来,为处理好超多目标优化问题,学术界提出了大量超多目标优化算法(Many-objective evolutionary algorithms,Ma OEAs),但现有超多目标进化算法仍存在较大的改进空间。一方面,大多数的超多目标优化算法仍然直接采用为单目标优化算法所设计的变异算子,没有考虑超多目标优化问题(Many-objective optimization problem,Ma OP)的特点;另一方面,现有算法的性能有待提升。为此,本文提出了两种新颖的超多目标优化算法。具体的研究工作如下:1)提出了一种基于变量分类与精英个体的超多目标进化算法(2REA-VCEM)。该算法的核心创新是设计了一个基于决策变量分类与精英个体的变异策略(Variable classification and elite individual based mutation strategy,简称为VCEM)。VCEM首先将决策变量分为收敛性相关变量和多样性相关变量。然后,对于每一代种群,选择一个收敛性最好的精英个体和一组多样性优秀的精英个体,并分别利用这两类个体的收敛性相关变量和多样性相关变量引导变异操作。为了验证2REA-VCEM算法的有效性,将2REA-VCEM与七种先进的超多目标进化算法在超多目标问题集上面进行了比较,实验结果表明所提出的算法表现出了良好的竞争力。此外,通过将VCEM与4种不同类型的Ma OEAs进行结合并与原算法对比,以及基于经典的超多目标优化算法与5种不同的变异算子进行对比,进一步证明了所提变异策略的有效性与通用性。2)提出了一种基于双指标选择策略的超多目标优化算法(Ma OEA-2IS)。Ma OEA-2IS在环境选择中采用两种选择标准来平衡种群的收敛性与多样性。首先设计了一种新颖的基于超体积(HV)指标的收敛性指标,并基于该指标挑选种群中收敛性最好的个体,同时通过分布性指标计算该收敛性最好个体与种群中其他个体的相似性。随后,当被选个体邻域没有其他个体时,这个个体将被认为是具有良好收敛性与多样性的个体而被保留到下一代,否则,该个体将被放入候选存档中。重复上述操作直到保留到下一代的个体数目达到种群上限。当下一代个体的数目不足时,候选存档中的个体将依据它们对下一代种群多样性的贡献被选出并保留到下一代。为了验证Ma OEA-2IS算法的性能,将Ma OEA-2IS与七种先进的超多目标进化算法在三个具有代表性的超多目标问题集上面进行了实验比较,结果表明Ma OEA-2IS能够有效解决超多目标优化问题。
其他文献
量子计算是依赖于量子力学原理来获得解的一种新型计算模型,由于量子计算的并行计算能力,量子计算在解决某些特定问题时,它比经典计算的效率要高。Grover量子搜索算法是量子算法中具有广泛应用前景的一种算法,算法可以在量子线路复杂度为/O(2n/2)的情况下求解一个规模为2n的搜索问题。本文从降低Grover算法的量子线路复杂度的角度出发,提出两种改进的算法,并将改进的算法应用到3-SAT问题上。1.为
随着信息化和数字化的快速发展,人们对信息传播质量的要求日益提高,作为传播最为广泛的媒体之一,数字图像的成像质量也成为了各行各业关注的焦点。然而,成像硬件、成像环境以及传输技术等条件的限制往往会降低图像的分辨率,导致图像信息的丢失。因此,如何将低分辨率图像通过算法重建为高分辨率图像始终是图像处理以及计算机视觉领域的一个热门研究方向。近几年利用深度学习算法进行图像超分辨率重建的研究逐渐增多,同时也取得
单目图像的三维人体姿态估计是计算机视觉中一项基本但富有挑战的任务,其目的是检测单目图像中的人体姿态并将其投影到三维空间中。随着科学技术的快速发展,三维视觉已成为人工智能研究和应用的热门领域,越来越多的专家学者投入到该领域的探索中。三维人体姿态估计精度一方面受图像外部遮挡、自遮挡和光线等因素影响,另一方面人体结构的特殊性也会给该问题的解决带来诸多困难。并且,如何将二维空间提升到三维空间本身是一个复杂
随着大数据、人工智能的高速发展,大数据系统平台数据量的规模呈爆炸式增长,庞大的数据量对数据存储和网络传输提出了不小的挑战,为了应对这一系列挑战,必须保证大数据平台数据存储中心的高效率存储和网络传输的高吞吐量,对平台上待存储的数据先进行压缩后再处理是应对这一挑战的有效手段,Gzip压缩算法因其压缩率高、压缩速度快被广泛应用于数据压缩领域。传统的Gzip软件压缩虽然可以实现数据压缩,但会占用通用处理器
随着大数据时代的到来,挖掘海量数据流的实时价值对于各行各业来说越来越重要。这类高速产生的流式数据通常具有实时性、动态性及持续性等特征,并且人们很难预测其未来的分布特性。分布式流处理系统可以满足企业人员处理实时数据流的需求。为了提高处理数据流的吞吐量,分布式流处理系统会利用流应用中的数据并行性。然而,倾斜分布的数据流常常会导致算子的并行实例之间的负载分配不均衡。其中,高负载的节点会拖累系统的处理速度
步态是一种流行的生物识别技术,可以远距离识别人类。它应该是唯一可以在远距离收集的生物特征。由于其独特的优势和在视频监控中的巨大潜力,在过去的20年中,许多研究人员对其进行了研究。尤其是近几年来,随着深度学习的发展,步态识别有了很大的提高。如今指纹、人脸识别的技术愈发成熟,但是步态识别技术的应用还面临许多挑战,比如摄像头视角变化、衣着变化等对识别的影响,所以我选择步态识别这个课题,希望能为解决步态识
多任务进化是进化领域中的一个新兴研究方向,主要研究如何充分利用任务之间的协同作用提高种群搜索的效率和性能。相对于传统的单任务进化,多任务进化能够通过多个任务之间的知识迁移提高算法的性能和进化的效率。基于多任务进化框架提出的单目标多任务进化算法和多目标多任务进化算法已经进化获得了优异的成果。本文对多任务进化算法进行了研究,并且对该领域做出了以下贡献:(1)提出了一个基于种群分布的两阶段知识迁移多任务
图像是日常生活中的重要信息媒介,在获取、使用等过程中,不可避免受到噪声的影响,破坏图像的质量,妨碍后续的处理。图像去噪问题是典型的病态逆问题,通常是图像迭代求解算法的关键步骤,需要利用先验信息对其进行正则化约束。通常图像去噪技术利用单幅图像的各种先验特征,结合不同滤波方法完成去噪,可采用的先验信息有限,难以有效选取特征保护图像边缘细节,且需手动多次调整参数,效率较低。近年来以卷积神经网络为代表的深
随着信息科技的逐步发展,人们越来越能更加快捷方便地获取信息。但网络技术的迅猛发展与网络信息量的快速增长,却使人们逐渐迷失在大量无效信息的包围中。信息超载问题伴随着信息科技与互联网的发展逐渐被人们重视、研究,由于信息超载问题使得人们在面对海量信息时无法有效获取自己感兴趣或者对自己真正有用的信息,使得信息整体的使用效率降低。与搜索引擎依靠特定策略和算法对用户提交的关键词进行搜索不同,作为解决信息超载问
多目标优化问题在现实生活中广泛存在,这些问题具有复杂度高,不易求解等特点,传统的数学方法难以对该类问题进行很好的求解。为解决这个问题,多目标进化算法被提出来并获得了广泛应用。多目标进化算法是启发式搜索算法中的一种,在处理多目标优化问题上,该类算法表现出了良好的鲁棒性和适用性。然而,随着目标个数的增加,这些多目标优化算法的有效性将逐渐地失效。原因是当目标数大于三个时,非支配解的数量将快速的占据整个种