五元内酰亚胺杂环类新型抗肿瘤化合物的设计、合成及初步活性研究

来源 :山东大学 | 被引量 : 0次 | 上传用户:qq3264132
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
五元内酰亚胺杂环因其结构稳定,含有氢键供体及受体,是药物设计的常见骨架。邻苯甲酰磺酰亚胺和2-硫代-4-噻唑烷酮是两类常见的五元内酰亚胺杂环,已广泛应用于药物研究,本论文分别以HDACs、Bcl-2为靶点,以邻苯甲酰磺酰亚胺和2-硫代-4-噻唑烷酮为结构骨架,设计合成了系列衍生物,通过结构改造和筛选,以发现有潜在活性的靶向抗肿瘤药物。本论文第一部分的研究以组蛋白去乙酰化酶(HDACs)为靶点。该酶活性可影响细胞周期,细胞增殖、分化、衰老、凋亡和血管生成等体内过程。在多种恶性肿瘤发生过程中均可见其表达
其他文献
近年来微电网的发展在世界各国受到高度重视,将其视为未来电力系统的重要组成部分。可再生能源与电动汽车在微电网内集成应用,有助于提高可再生能源就地消纳,同时实现电动汽车的低碳环保,提高能源利用效率、经济效益和环保效益。本文主要研究微电网内电动汽车储能的优化控制,在微电网协调控制和能量管理层面对具体的应用场景提出储能优化控制策略,以提高微电网的运行性能。另外对电动汽车退役动力电池梯级利用相关技术进行了研
学位
风能和天然气均是储量丰富、安全清洁的绿色能源,对于缓解能源危机、环境污染以及气候变化等问题具有十分重要的作用。随着风力发电和天然气发电技术的广泛应用,电力系统的电源结构和电网形态正在发生变革。未来电网中,风能和天然气将逐渐替代煤炭成为电网电源结构中的重要能源,并且电力网络与天然气网络将呈现紧密耦合的形态。因此,分析和研究含大规模风电电力系统和电-气互联综合能源系统的特性,对保障未来新形态能源网络的
金属锂具有已知金属中标准电极电位最负(-3.04 V vs. SHE)、密度极低(0.59g cm-3)、理论比容量最高(3860 mAh g-1)等突出优点,在用于高比能二次电池负极方面具有相当诱人的前景。但是金属锂在循环过程中极易形成锂枝晶,锂枝晶生长到一定程度会刺穿隔膜,使得电池在充放电过程中容易发生内部短路,继而引起爆炸;同时枝晶断裂形成死锂,也会降低金属锂电池的容量,从而导致循环效率大幅
学位
柔性直流输电技术凭借其能无源逆变、电能质量好等特性成为解决孤岛及城市中心配电等无源网络供电的重要技术手段之一,然而,传统两电平及三电平电压源换流器输送功率有限。级联多电平电压源换流器成本高且控制及保护策略复杂。常规直流输电系统输电容量大、成本低、可靠性高,但其逆变侧需提供换相支撑电压,无法连接无源网络。为能更好地实现向多落点无源网络供电,本文提出一种电网换相换流器LCC(line commuted
学位
风力发电场(WF)正常运行时要从电网吸收无功功率,可引起系统电压水平下降。电网出现扰动或故障时,风力发电机组需要从电网吸收较大容量的无功功率,不利于系统电压稳定和机组实现LVRT.风速不稳定时,容易导致WF输出功率波动,导致系统电压波动。风电场无功补偿容量不够时,接入点电压会发生波动,发生电压闪变。电网波动时等效的转子侧励磁电流的微分不等于零,以此为基础建立了DFIG的转子侧数学模型。在电网电压不
学位
全世界对太阳能光伏电池的需求量很大,但太阳能光伏电池的制造成本一直居高不下,其主要原因之一便是切片成本过高,因为在线锯切割时,切缝损失很大,而且游离磨料切割方法效率低下。针对这些问题,本文提出了亚固结磨料线锯切割方法,即在线锯表面增加很多凹槽,磨粒在凹槽几何镶嵌的作用下,形成瞬时固结状态,此时,磨粒在工件表面不再是滚压,而是产生类似固结磨料的划刻或耕犁作用,可显著提高切割效率和减少切缝损耗。本文主
学位
随着环境污染与能源枯竭问题的日益加重,基于可再生能源的分布式发电已成为电气工程和能源领域的前沿技术和研究焦点。传统无源配电网将逐步发展成为遍布分布式电源且控制手段丰富的主动配电网。然而,风、光等自然资源的间歇性使得分布式电源的功率具有随机性,其大规模接入后将使配电网的经济安全运行面临严峻挑战,因此,主动配电网必须具备消纳大量分布式电源的能力。本文对主动配电网电压无功资源的优化配置和协调控制等问题进
学位
癌症已成为当代影响人类社会健康发展的重要问题。在人类与癌症长期斗争的历程中,已发展了多种治疗方法用于临床。其中药物疗法已成为当前临床干预、治疗癌症的主要手段之一。分析近年来多种新型抗癌药物的作用机制,很多药物都是通过诱导肿瘤细胞凋亡而发挥作用的。现代生物医学认为,细胞凋亡是机体的一种正常的生理过程,在胚胎的形成、组织内环境稳定以及去除多余或受感染细胞等过程中扮演着重要角色。在病理条件下,细胞凋亡发
学位
1901年Ullmann首次报道了铜催化的交叉偶联反应,是由两个芳基卤化物之间形成C-C键的偶联反应,仅限于联芳烃的合成。1903、1905年Ullmann又分别报道了芳基C-N键、芳基C-O键的偶联反应。1906年Goldberg报道了(芳基)C-N(酰基)的偶联反应,1929年Hurtley报道了芳基C-C(活泼亚甲基)的偶联反应。这类由铜催化的交叉偶联反应可广泛地应用于芳基碳-碳、芳基碳-氮
学位
癌症已成为严重威胁我国人民生命的重大疾病,肿瘤已成为导致人口死亡的重要病种之一。而如今癌症的发病率和死亡率还在不断增加,癌症仍然是困扰世界的难题,抗癌药物研发的任务依然十分艰巨。参照国内外相关文献,以乳香酸(AKBA)为先导化合物,发现AKBA结构改造基本着眼于A环上两个官能团的衍生,通过成酯键、酰胺键等方式制备了一大批衍生物。本文通过对A环进行扩环、开环、缩环、增加官能团等结构改造设计并合成了四
学位