永磁同步电机容错控制优化策略研究

来源 :安徽大学 | 被引量 : 0次 | 上传用户:hellojie
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
永磁同步电机(Permanent Magnet Synchronous Machine,PMSM)具有体积小、转矩密度大等优点。随着永磁材料的性能不断提高,永磁同步电机被广泛应用在交通运输、国防军工、航空航天等领域。对于这些可靠性要求高的场合,电机发生故障轻则影响系统运行性能,重则会使电机损坏,导致整个系统停止运行,甚至造成灾难性事故。面对复杂的应用工况需要永磁同步电机具备故障条件下能持续运行的能力,因此,对PMSM进行容错控制策略的研究是很有必要的。在电机驱动系统中,定子绕组发生开路故障是常见的。电机绕组开路故障会引起电机转矩脉动增大,电机损耗增大等问题。本文对三相表贴式PMSM进行研究,研究电机绕组发生开路故障的容错控制策略。主要内容为:首先,对PMSM的结构、工作原理以及其数学模型进行简要介绍。分析电机驱动系统控制策略,包括矢量控制和模型预测控制。矢量控制作为经典控制策略,具有响应速度快,调速范围广等优点。模型预测控制对比于其他控制方法,控制思想更为简单,具有可以实现多目标的同时控制的优点,根据控制量设定目标函数,根据函数选择最优电压矢量作为输出矢量,实现对电机的控制。通过MATLAB/Simulink仿真对上述控制策略进行验证。其次,分析永磁同步电机容错控制原理。并且详细介绍了三相四桥臂(Three-Phase Four-Leg Inverter,TPFLI)容错拓扑和两相四开关(Two-Phase Four-Switch Inverter,TPFSI)容错拓扑。通过对两种容错拓扑的对比,本文选择的拓扑结构为两相四开关,并对容错控制策略进行仿真验证。最后,针对采用两相四开关容错拓扑时,传统容错控制策略没有考虑直流侧电容电压存在偏移以及容错控制时电机铜损耗增大的问题,本文根据理论推导,提出了一种PMSM容错控制优化策略。在MATLAB/Simulink中进行仿真模型的搭建,并搭建实验平台,进行实验验证上述容错控制策略。
其他文献
近年来,传感器与无线通讯的融合促使无线传感器网络(WSN)快速发展。WSN中传感器的类型众多,执行的功能不一,它们可以检测温度、压力、湿度和光强度等。这些传感器数量巨多,供能仍然以电池为主。虽然它们功耗较低,但是电池容量有限,当电池能量耗尽时,传感器无法正常工作,很大程度上限制了WSN发挥作用。针对这一问题,一些研究人员提出从环境中收集机械能量来替代传统电源的可行方案。通常,机械能量转换机制主要包
制作与构建对环境友好无污染以及高电容、长寿命、低损耗的新型电容储能器件对现代信息科技社会具有十分重要的意义。传统的电容储能器件主要是双电层电容器和法拉第赝电容器,但是,它们各自有自己的缺点限制了其本身更好的发展,比如能量密度较低,因此,在传统电容器基础上应运而生了一种更为先进的储能器件—混合超级电容器(HSC)器件,该器件是由法拉第赝电容器和双电层电容器共同组成的,可以同时兼备法拉第赝电容器和双电
近年来,资源和环境问题日益突出使得电动汽车成为当下研究的热点。考虑到市面上还没有一种单一储能装置能够满足电动汽车对高功率密度、高能量密度、高耐久的要求,本文将拥有高能量密度、循环寿命短的蓄电池和高功率密度、循环寿命长的超级电容相结合构成复合储能系统(Composite Energy Storage System,CESS),充分发挥二者的优势,取长补短。由于CESS存在两种能量源,能量如何在两种能
三相同轴高温超导电缆具有三相无需独立屏蔽、损耗极低、通流能力强、超导带材用量减少、无漏油和火灾隐患、变压设备等级降低等优点,成为解决城市负荷增长与地下空间受限之间的矛盾,打破城市电力传输瓶颈的研究热点之一。三相同轴高温超导电缆在实际的电力系统运行中,会受到短路等故障电流冲击。在故障电流的冲击下,超导电缆会产生大量的热,严重时会烧坏电缆。研究三相同轴高温超导电缆暂态电磁热特性,对保证超导电缆的安全运
近几年不仅是新型能源技术进步的创新期,还是电动汽车技术成长的加速期。纯电动汽车以其经济、环保等优势被推广,车用异步电机也由其调速范围宽,结构简单,易维护等优点被广泛使用。由于电动汽车高速行驶的场景不断增加和对车辆高性能(稳定性、舒适性)的追求,弱磁控制技术也十分急迫的寻求升级。但是,当电机转速大于额定转速后,受电机本体参数和逆变器容限影响,现有的弱磁算法容易失效,电机输出转速和转矩很难达到预定要求
随着现代高新科技的迅速发展,机器人、机械手臂等机械系统对运动维度的要求也越来越高。然而能够实现多自由度运动的永磁式球形电机存在调速范围较窄和运动控制复杂的问题。因此,本文结合异步电动机和直线感应电动机的原理提出了一种新型感应式球形电机,并对其结构进行了优化设计。该电机不仅结构简单,转矩输出能力强,还便于实现各种高精度闭环运动控制,具有广阔的应用前景。本文研究内容分为以下三个部分:(1)介绍了本文提
直线电机在精密机床、3D打印、激光切割、数控系统等领域中的应用越来越广泛,需要满足各种工况下的稳定和安全运行的要求。永磁同步直线电机的输出推力与电机绕组电流密切相关,提升电机的电负荷是提升电机推力密度从而极大提高电机输出推力的可行方法,但是,这必然导致电机绕组电流密度极大提升,绕组温升会迅速变大。与有铁芯直线电机的构造相比,无铁芯直线电机的线圈没有足够的散热空间,更应该考虑其温升特性。水冷是电机常
目前,随着现代工业的迅速发展,传统石化资源的日益枯竭所带来的能源危机激发了研究人员对可再生能源的研究热情,而储能元件的开发和能量转换材料的制备是至为关键的一环。MXene目前已经受到了科研人员的广泛关注,得益于其作为一种新型二维过渡金属材料,具有导电性能佳,比表面积大,机械性柔韧性强等特点,在MXene材料中研究最为广泛的为Ti3C3Tx,其具有毒性低,合成工艺成熟,稳定性好等优点,在储能领域具有
内置式永磁同步电动机由于其高效率、高功率密度、高功率因素等特点被广泛的应用于电动汽车、船舶、智能家电等领域。在这些应用中,由于客户对于舒适度的追求和实际的需要,电机能否安静稳定的运行成为一个重要选择指标,因此近年来永磁同步电动机的振动噪声问题引起了广泛的关注。本文围绕一款新能源车用内置式永磁同步电机的电磁振动及噪声问题展开研究。首先分析该电机电磁噪声的来源。从正弦波和变频器供电情况下的气隙磁场出发
不可再生能源的过度使用以及温室气体的超标排放已经成为人类所面临的重大问题之一,安全、方便、高效和绿色地利用可再生能源成为解决该问题的主要方法。超级电容器作为除电池外的一大类储能器件而发挥着重要的作用。二维过渡金属碳化物/氮化物(Mxenes)由于其具有较高的导电率、良好的亲水性和较高的能量储存密度等优异性质成为超级电容器电极材料的热门选择,为解决该问题提供了另一种可能。本论文旨在探索以二维碳化钛(