【摘 要】
:
社会的不断进步和持续发展促使工业生产和生活环境的多样性也在不断增加。在物品的生产和使用过程中,产品表面发生异变从而导致缺陷的发生是不可避免的。因此,如何高效、准确的检测缺陷的发生,一直是人们不断思考的问题。缺陷检测是工业生产中无法避免且必要的一个环节。科学技术的进步和近年来深度学习技术的不断突破,使得机器视觉在各个应用场景的优势也越来越明显。本文以卷积神经网络为理论基础,针对工业产品表面缺陷自动检
论文部分内容阅读
社会的不断进步和持续发展促使工业生产和生活环境的多样性也在不断增加。在物品的生产和使用过程中,产品表面发生异变从而导致缺陷的发生是不可避免的。因此,如何高效、准确的检测缺陷的发生,一直是人们不断思考的问题。缺陷检测是工业生产中无法避免且必要的一个环节。科学技术的进步和近年来深度学习技术的不断突破,使得机器视觉在各个应用场景的优势也越来越明显。本文以卷积神经网络为理论基础,针对工业产品表面缺陷自动检测开展研究。本文的主要研究内容如下:1.提出了一种基于卷积神经网络且不依赖人工语义标注的两阶段表面缺陷检测的方法。方法由两个不同阶段组成,分别为掩码产生过程和检测过程。在掩码产生过程中使用卷积神经网络自动生成的掩码代替人工标注,然后将掩码用于训练缺陷检测的网络。在检测过程中利用前面生成的掩码训练一个实现缺陷目标可视化的全卷积网络,用于指示缺陷的位置,并同时实现缺陷的检测任务。通过相关实验证明了本方法能够有效的实现缺陷定位和检测。2.针对工业生产过程中有时可用样本非常少的问题,提出了一种小样本度量迁移学习的方法,用于解决传统深度学习方法中需要大量目标领域数据的困境。小样本度量迁移学习主要分为两个过程:第一个过程,用一个公开的或者便于获得的大型数据集预训练深度网络;第二个过程,将网络学习到的相关知识通过度量学习模块迁移到表面缺陷检测领域。详细的研究和实验表明,小样本度量迁移学习在缺陷检测领域具有可行性并且拥有很大的应用潜力。
其他文献
随着5G网络的开始商用,人们已经开始越来越依赖网络了。网络中每天都会产生大量的数据,这些数据包括网络用户的一些个人信息,银行卡号,支付密码等等。用户与网站安全的数据交互变得尤为重要。目前,钓鱼网站因其拥有存活时间短,危害性大的特点已经成为网络安全中的一个重大威胁。网络钓鱼利用诸如电子邮件和SMS之类的社会工程技术,将网络钓鱼URL伪装成合法网站的URL来窃取用户的私人信息。因此建立一个可以快速并且
甲状腺结节是最常见的临床病变之一,可由多种病因引起,其发病率逐年升高。对其治疗的关键问题是鉴别结节的良恶性质。超声诊断是甲状腺结节诊断的一种常见方法,并在识别结节大小,定位结节部位、指导穿刺上具有一定价值。当放射医师根据甲状腺超声图像判断甲状腺为恶性时,应进一步进行细针穿刺活检或手术。但是,由于缺乏经验的放射科医生可能会导致误诊。此外,甲状腺结节自身形态复杂多样,以及超声图像本身噪声高且对比度低,
自二十一世纪以来人工智能技术的快速发展,深度学习中的神经网络算法凭借其自主学习能力在分类,检测和分割等任务上得到深入研究,目前基于深度学习的目标检测算法在行为监控、目标检测与追踪、自动驾驶等多个实际应用场景中都证明了其优秀的表现能力。随着遥感技术的进步雷达波已经成功达到毫米级别,合成孔径雷达(Synthetic Aperture Radar,SAR)作为一种应用最多、穿透力较强的雷达波,能够有效探
CDMA是现代通信系统中重要的通信技术之一,其信道可供所有用户同频、同时占用,以扩频码区分用户。但在多用户情形下存在多址干扰问题,使得用户数量的上限和CDMA系统性能受到限制。基站接收机可以使用多用户检测算法来减弱多址干扰并增加系统容量,串行干扰消除(SIC)是多用户检测算法之一,由其具有实现复杂度低和系统性能高的特点而受到广泛的关注。使用这一类的多用户检测算法,可以有效缓解CDMA所面临的多址干
脑-机接口(Brain-Computer Interface,BCI)技术通过解码大脑产生的电信号,在大脑与外部设备之间建立起一条直接的通信通路,是一种新型的人机交互模式。基于头皮脑电(Electroencephalogram,EEG)的BCI由于安全性好、操作简单的优点受到研究人员的广泛关注,但头皮EEG信号的信噪比和空间分辨率不高。独立分量分析(Independent Component An
随着深度学习技术的发展和终端设备的普及,深度学习应用被广泛运行在终端设备。深度学习应用具有强大的数据分析功能,能够处理终端设备产生的海量数据并提取有效信息,以实现终端设备的智能化。深度学习应用作为资源消耗型任务,目前主要有两种部署和执行方式:一种是基于云服务器的部署和执行,另一种是基于终端设备的部署和执行。基于云服务器的部署和执行,将终端设备产生的海量数据发送到云服务器,这将带来较高的传输时延,难
随着电子商务的不断发展,车辆路径优化问题成为物流领域的研究热点,合理的路径规划可以有效提高货物运送效率,降低运输成本。进化算法在求解该问题上可以获得较好解,因而诸多学者对此进行了深入研究。然而,现有基于进化计算的求解方法搜索解的速度较慢,并且存在随着问题规模不断扩大算法性能急速下降的情况。因此,本文针对带容量约束的车辆路径优化问题(Capacitated Vehicle Routing Probl
自然语言理解作为构建人机对话系统的核心组成部分之一,具有非常重要的科学研究价值。而意图识别则是自然语言理解系统中的一项子任务,其准确性直接影响到了自然语言理解性能,进而影响人们对人机对话系统使用的体验。随着人机对话系统的不断发展和完善,越来越多的任务型人机对话系统不断地部署到人们的现实生活中,如智能手机助手、车载语音助手以及APP中的智能客服系统等等。然而,由于人类口头语言在现实场景中的随意性和简
RGBT目标跟踪是指通过结合可见光(RGB)和热红外(T)视频数据进行目标跟踪的新兴热点研究课题。多年来,基于单模态的目标跟踪技术取得重要突破,但是该类算法在面对一些较为复杂的场景或者极端条件下仍旧难以发挥良好的性能,例如光照不足、恶劣天气、背景杂乱和目标遮挡等。由于热红外成像能够很好克服上述挑战因素的影响,弥补可见光成像的不足,而可见光图像可以补充热红外成像中丢失的颜色和细节信息,因此,合理利用
随着信息社会的高速发展,网络这种数据结构存在于越来越多的现实情境,并在计算机及其相关领域得到广泛应用,对这些网络进行分析具有很高的学术价值和现实应用价值。值得注意的是,进行有效的网络分析一般依赖于对网络的表示方式。传统的对网络进行表示的方法通常是使用高维稀疏的向量,但现如今复杂网络中的连边数量和节点数量是可能达到数十亿,因此使用传统的网络分析方法在整个网络上进行计算和推理面临很多困难。网络表示学习