反应性梯度诱发自燃模式及其转变的基础研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:onionshen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
发动机小型强化是实现汽车节能减排和提高热效率的主要技术方法,但随之引起的超级爆震等异常燃烧现象会对发动机产生极强的破坏。超级爆震现象的产生与局部“热点”自燃密切相关,发动机中温度和浓度不均匀引起的反应性梯度会导致不同的自燃模式,而不同的自燃模式会导致不同程度的爆震,目前对于自燃模式及其转变机理尚不十分明确。本文基于非稳态反应流自适应模拟程序,在发动机工况下探究局部反应性梯度诱发自燃现象及对燃烧过程的影响。研究结果有助于理解发动机中超级爆震产生机理,对进行爆震调控提供理论指导。首先,进行了温度梯度诱发自燃模式及转变的研究,在热点内部设置温度梯度,探究甲烷、氢气、甲醇三种燃料在热点内外自燃模式转变规律及机理。结果表明:在热点内,归一化温度梯度ξ和压力波与反应放热之间的耦合状况ε可以在爆震半岛中识别出不同燃料的各种自燃模式,如超音速自燃、发展爆轰和亚音速自燃等。在热点外部也涉及自燃模式的转变,包括爆轰的形成和终止:爆轰发展过程是定压燃烧向定容燃烧转变的过程,这个过程受热点内部反应性梯度控制的早期传播和热点外剩余混合物的反应性共同影响。此外,对于甲醇/空气混合物,随着温度梯度的不断增加,ξ先增大后减小,在大热点半径下观察到极大温度梯度时再次出现发展爆轰的自燃模式,扩展了原有的爆震半岛理论。其次,进行了浓度梯度诱发自燃模式及转变的研究,将正庚烷作为高反应活性燃料(HRF)添加到低反应活性燃料(LRF)甲醇中,研究了正庚烷局部浓度不均匀引发的自燃传播模式和爆轰发展规律,并研究了初始区域外部正庚烷含量对于自燃模式的影响,以此来探究反应活性对于自燃模式转变的影响。结果表明,类似于温度梯度,归一化浓度梯度ξ和压力波与反应放热之间的耦合状况ε可以很好的定义双燃料爆震半岛,HRF浓度不均匀性同样会导致超音速自燃、发展爆轰和亚音速自燃等自燃模式。爆轰区域随着初始温度的增加而变窄。初始区域外部正庚烷摩尔分数增加,爆轰下限变化并不明显,但是爆轰上限明显降低,整个爆轰区域变窄。这与剩余混合物反应性强弱和反应波前局部自燃高温反应的强弱有关。最后,进行了浓度分层对自燃模式影响的研究。以甲醇/空气混合物为例,探究了在经历不同程度浓度分层后,超音速自燃、发展爆轰和亚音速三种自燃模式传播和转变的规律。结果表明:浓度分层可以促进超音速自燃转变为发展爆轰;可以扩展或缩小发展爆轰传播范围;但是对于亚音速自燃传播模式的影响不大,不会导致自燃模式的转变。
其他文献
高强铝合金薄壁筒件由其比强度高、质量轻、切削性能好、体积小等优点,在航空航天、核工业等领域有着广泛的应用;但该零件在加工过程中存在切削工艺性差的缺点。本课题采用双刀对置的镜像加工工艺对铝合金薄壁筒件进行加工,并对薄壁筒镜像加工过程中颤振问题进行研究,首先,利用壳理论建立薄壁筒镜像切削工艺系统动力学模型,分析工件与镗杆的振动特性;其次,进行切削工艺系统的稳定性分析,找出影响系统稳定性的主要因素;最终
学位
近年来,微操作技术在精密制造、电子信息、生命科学等领域得到了广泛应用,而在微操作技术中对于系统的姿态调整至关重要,结合目前对于精密定位系统的运动检测手段,开展基于视觉的姿态测量和调整具有重要意义。本文旨在提高姿态调整系统的自动化程度,进行了如下研究工作:设计了基于粘滑原理的双驱动微角度摆动平台,对所设计平台的驱动部分进行了静态特性分析,并利用柔度矩阵法对驱动部分的输入刚度进行建模。考虑平台的紧凑性
学位
有机朗肯循环(organic Rankine cycle,ORC)已成为中低温热能回收利用的有效手段和研究热点。提高ORC传热过程中的热源匹配程度,降低传热过程中的损失,降低热源出口温度,可以有效提高系统的净输出功。然而,净输出功的提高往往以经济性下降为代价,因此,兼顾输出功率、经济性和实用性的有机朗肯循环的研发是现阶段中低温余热回收利用研究中有价值的一项工作。可调节传热窄点的有机朗肯循环(Adj
学位
进气道作为内燃机进气系统的重要组成部分,直接影响着内燃机的进气充量和缸内气流运动,进而影响缸内混合气的形成及燃烧状况,最终对内燃机的动力性、经济性以及排放性能产生重要影响。随着排放法规的愈发严苛,高性能、低成本的内燃机进气道开发势在必行。因此,本文针对四气门柴油机进气道围绕着气道参数化建模、稳态数值模拟、结构参数灵敏度以及结构优化开发这四个部分展开了研究。主要内容和结论如下:采用曲面法在Pro/E
学位
湍流射流点火(TJI)发动机可通过在预燃室内点火并喷射射流实现主燃烧室多点点火,从而大幅提升发动机燃烧速率及燃烧稳定性。本文基于一台单缸试验发动机首先开展了湍流射流点火(TJI)对发动机性能,燃烧影响的初步探索。其次开展了高压缩比对TJI发动机性能及燃烧特性影响的试验研究,最后开展了高压缩比稀燃条件下TJI发动机负荷拓展及性能优化的试验研究,此外着重探讨了TJI发动机压力震荡特性及其与SI发动机爆
学位
重型柴油机在可预见的未来仍将是各种动力装置的主要原动机,高效、清洁一直是重型发动机的研究主题,随着内燃机新型燃烧模式和技术的快速发展,热效率和尾气排放已经显著改善。但近年来,随着人们对雾霾的关注和国VI法规对颗粒数限值的实施,如何有效控制颗粒物排放成为国内外研究者的重要议题。本文基于重型单缸热力学发动机平台,采用试验研究的方法,在中等转速低负荷工况(1200r/min,IMEPg~0.5 MPa)
学位
向高功率密度、高转速方向发展是实现柴油机节能减排和适用多变环境的重要路径,这也给柴油机的燃料供应系统的喷射压力和雾化控制提出了更高的要求。当前,电控共轨喷油器应用的最高喷射压力已经从160~180MPa向250MPa的目标提升,未来将会达到300MPa;然而,享受追求高压力参数带来的均匀喷液和燃烧充分的同时,也不可避免给阀芯、喷嘴等关键部件的稳定性和可靠性提出了新的挑战。其中,这些部件的变流通截面
学位
二氧化碳等温室气体的大量排放引起的全球变暖等气候变化问题引起世界各国的关注,减少碳排放已成为共识。碳捕集作为主动碳减排的关键技术措施,对气候变化目标的完成发挥着不可替代的作用。作为发展成熟且接近商业化的化学吸收法碳捕集技术,尤其适用于电厂等大型单点源碳排放场景,然而单位捕集能耗过高的瓶颈抑制了其推广,急需开展节能降耗研究推动其实用化。本文从热力学机理、吸收剂物性和耦合系统等不同层面对吸收法碳捕集技
学位
新能源汽车、航空航天以及船舶、电力装备等领域大量使用铝合金结构件,其连接多采用搅拌摩擦焊接技术完成,该技术对焊接装备的刚度性能要求较高。论文结合一种新型三维搅拌焊接装备的设计,研究了一种3UHU/UP并联机构(Tri-X)的刚度建模及优化设计问题,主要内容如下:(1)在Tri-X机构运动学分析的基础上,利用边界搜索算法,得到了Tri-X机构的可达空间,远大于同尺度下的Tricept机构;并根据任务
学位
机器人辅助输尿管软镜术作为一种针对泌尿系统疾病而兴起的技术,可以有效地减轻泌尿外科医生的手术负担,提高手术质量和效率。本文围绕泌尿外科医生在进行机器人辅助输尿管软镜术中的实际需求,研究利用术中图像信息提升输尿管软镜手术机器人性能的可行性。由于人体自然腔道生理约束的存在,输尿管软镜在绕轴向旋转时存在明显的运动偏差,同时输尿管软镜末端空间狭小,难以安装可检测运动偏差的传感器。因此,本文针对输尿管软镜成
学位