亲锂框架的设计及其锂金属负极性能研究

来源 :福州大学 | 被引量 : 0次 | 上传用户:jiangda
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
移动电子产品和电动汽车等领域的高速发展对锂离子电池的能量密度提出了更高的要求。然而,目前商用锂离子电池的能量密度受限于石墨负极低的比容量而发展缓慢。锂金属因具有极高的理论比容量(3860 m Ah g-1)和最低的还原电位(-3.04V vs.标准氢电极)被视为未来的“圣杯”电极。但锂金属本身存在体积变化、枝晶生长和副反应等固有问题而极大阻碍了其商业进程。在众多改进方案中,设计均匀的亲锂框架来负载锂金属是解决以上问题的有效策略之一。本论文以具有微米孔洞的三维商业碳布为基底,在其表面分别修饰了亲锂Cu O纳米簇阵列和CoSe2纳米颗粒镶嵌的氮掺杂碳纳米片阵列。结合实验验证和理论分析,系统研究了亲锂框架对锂沉积形貌和电化学性能的影响,探究其在锂金属负极的应用前景。论文主要研究内容和结果如下:1.利用简单的水热反应法在碳布上生长了均匀的亲锂Cu O纳米簇阵列,并结合熔融锂注入法制备了Li/Cu-NC@CFC复合锂金属负极。有限元仿真和实验结果显示,Li/Cu-NC@CFC可有效抑制锂枝晶的生长并缓解锂剥离/沉积期间的体积变化,从而展现出优异的循环性能。对称电池测试表明,该电极在5 m A cm-2的电流密度,1和5 m Ah cm-2的循环容量下能够分别稳定循环400 h(1000圈)和800 h(400圈)。当Li/Cu-NC@CFC复合锂金属负极与Li Fe PO4(LFP)匹配组装成全电池,测试表明,Li/Cu-NC@CFC//LFP全电池可在2 C倍率下稳定循环500圈并保持110.3 m Ah g-1的高比容量。2.结合室温溶液法、高温碳化和硒化法,在碳布表面引入了亲锂Co Se2纳米颗粒镶嵌的氮掺杂碳纳米片阵列(CoSe2-NC@CFC)。实验表明,Co Se2纳米颗粒在锂初始沉积过程中会与锂反应生成Li2Se和金属Co纳米颗粒。通过理论计算、有限元仿真和实验,发现在Co纳米颗粒、高离子电导Li2Se、氮掺杂碳纳米片及碳布框架的协同作用下,Co Se2-NC@CFC可以稳定电解质/电极界面,促进锂的均匀沉积并缓解体积变化。研究发现,Li/Co Se2-NC@CFC对称电池的过电势仅为45 m V,且可在10 m A cm-2和10 m Ah cm-2的超高电流密度和循环容量下循环1600 h(800圈)。进一步地,Li/Co Se2-NC@CFC//LFP全电池在2 C倍率下经过1000圈循环后具有109.4m Ah g-1的高比容量。本论文通过构造亲锂纳米结构对碳布进行了表面改性,研究结果对如何缓解锂金属负极体积变化以及枝晶生长具有实际意义。
其他文献
利用受激拉曼散射现象能将基频激光以介质拉曼频移量为间隔扩展新的激光谱线,在光纤通信、生物医疗等多个领域都有着广泛的研究与应用。光学微球腔由于品质因子高、回音壁模(WGMs)的模式体积小、光子寿命长、功率密度大等特点在研究低阈值微腔激光器、非线性光学现象方面有很大优势。自激发拉曼散射(Self-SRS)现象在同一谐振腔中同时存在受激辐射基频激光和受激拉曼散射激光,利用其扩展激光光谱的光学结构变得简化
学位
为了缓解环境污染、化石能源消耗、气候变化等一系列问题,近年来光伏发电装机量在世界范围内迅猛增长。光伏阵列作为光伏发电系统的核心能量采集部件,长期工作在恶劣户外环境下易发生性能退化及遭受各种故障,因此评估其工作状态对提高发电效率、减少火灾事故发生等方面具有重要意义。本文主要从基于Ⅰ-Ⅴ特性曲线的光伏电池/阵列模型内部参数辨识和光伏阵列故障诊断两个方面开展研究,主要工作内容如下:首先,提出一种基于网格
学位
伤口感染是临床上常见的问题,通常会造成伤口闭合时间延长或疤痕形成。采用抗生素和敷料护理是临床上常用的治疗感染伤口的方法。然而,抗生素的滥用容易导致耐药菌的产生,进而造成更严重的感染,形成慢性难愈合伤口,严重时还能引起威胁生命的并发症。同时,功能单一的普通敷料也难以满足伤口愈合过程中的所有需求,因此很难实现伤口的快速愈合和功能修复。本课题基于氧化葡聚糖(ODex)和甲基丙烯酰化明胶(Gel MA),
学位
智能、高效的故障诊断方法对提升光伏电站的发电效率,维持其正常运行具有重要意义。近年来,许多基于机器学习和深度学习的智能方法被应用于光伏阵列的故障诊断。然而,受最大功率点跟踪算法、时变环境条件等因素影响,光伏阵列的电气工作参数包含复杂的暂态过程,严重影响了故障特征质量。此外,难以从实际光伏阵列中获取大量真实样本数据,用于训练出高性能的故障诊断模型。针对上述问题,本文开展了深度迁移学习和稳态时序数据的
学位
近年来,通过改变自编码器的潜变量空间对数据的属性进行选择性控制已经引起了学术界的广泛关注。属性控制生成是数据生成领域中一个重要的研究方向,目的是由模型学习数据的不同特征,在生成的过程中通过简单的调控生成具有期望的特征的数据。通常,数据由深度生成模型进行表示学习并编码到潜变量空间中,通过查找潜变量空间维度和数据属性的对应关系来操控数据的属性。例如对于人脸图像数据,通过使用表示学习的方式,把脸部的特征
学位
基于von Neumann架构的传统计算机由于存储单元和CPU的分离,极大地限制高效计算机的发展。相反,具有高度连通性(突触)的哺乳动物皮层神经元可以并行处理大量信息。因此,在冯·诺依曼瓶颈的推动下,人们对用于神经形态并行计算的仿生突触器件产生极大的兴趣。然而,关于对突触性能进行精确调控的文献报道并不多。因此,通过合理的器件结构设计来调控器件的突触性能,对于未来实现高精度高保真度的神经计算具有重大
学位
在当今的信息时代,随着人工智能和物联网技术的发展,传感器技术已经成为了当代科学技术推进必不可少的一部分,也是工业腾飞发展的基础和保证。霍尔角度传感器是目前主流的一种非接触式的磁性角度传感器,它将磁领域和电领域关联到了一起,它前端探测头与后端的信号处理电路集成在一起,它的动态范围宽,制造的成本低,在工业、汽车和消费电子领域得到广泛的应用。接触式传感器根据滑动变阻器的原理制造,电刷和电阻带之间的摩擦会
学位
由于具有能量密度大、循环寿命长、无污染等优点,锂离子电池在通信、电动汽车、航空等行业得到了广泛使用。准确判断锂离子电池的性能退化程度,对于提高电池的运维质量、确保设备正常工作具有重要意义。然而电池性能退化与多方面因素相关,主要包括荷电状态(State of Charge,SOC)、健康状态(State of Health,SOH)和剩余使用寿命(Remaining Useful Life,RUL)
学位
特征工程在机器学习中占据重要的地位,是机器学习中最复杂,最耗时的任务之一。特征工程往往需要专家知识,自动化困难。现有的大部分自动特征工程存在计算量大、缺乏发现复杂特征的能力以及易发生特征爆炸的问题。因此本文将二分类的数值数据的特征工程视作马尔可夫决策的过程,用强化学习的方法来实现自动特征工程,通过数学运算符生成新特征。这种方式不仅可以通过原始特征生成新特征,也可以通过生成的特征生成新特征,因此存在
学位
字符识别技术在信息检索,信息保存等方面有着重要的意义,可以提高交通、银行等领域工作效率,可以为盲人在室内提供导航信息,也可以为自动驾驶提供信息。机器学习支撑的识别算法在某些特定的情况下已经取得了很好的效果,但是终究因为字符的多样性和复杂性,在字符识别上依然存在着诸多的问题。本文提出了一种对SSD模型改进的方法,可以很好的实现文本的定位,提高对小/长文本的检测。本文的工作可以概括如下:本文采用SSD
学位