二氧化钒太赫兹特性及其器件研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:jwh777
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二氧化钒(VO2,Vanadium dioxide)在接近室温时(341K)会发生可逆的绝缘-金属转变(IMT,Insulator-Metal Transition),并伴随着在太赫兹(THz,Terahertz)波段显著的透射率变化,因此被广泛用于制备具有动态调制效果的THz器件。近些年来对VO2薄膜生长机理的研究进展迅速,降低了具有高调制性能的VO2薄膜的制备成本,为VO2薄膜在THz可调谐器件中的应用扫清了障碍。因而,探索VO2薄膜在THz波段的调制现象的物理机制,优化其动态调制性能,扩展VO2薄膜在THz可调谐器件中的应用场景,具有十分重要的研究意义。据此,本文从VO2薄膜的IMT机制入手,重点研究了相变过程中金属畴与绝缘畴的共存现象及其对渗流阈值的影响。随后,介绍了Co(Cobalt,钴元素)掺杂对VO2薄膜THz调制特性的优化。之后通过将VO2薄膜与金属超结构复合,探索VO2薄膜在THz可调谐超材料中的应用。然而,研究发现VO2薄膜的固有物理性能限制了复合超结构的动态THz调制性能,而人工设计的可重构结构可以打破这一限制,因此,本文最后部分研究了将VO2复合超表面与柔性电子工艺结合的可行性,并验证了柔性亚波长单轴波纹结构对VO2复合超结构THz响应的调制作用。本论文的主要研究内容如下:1.通过将VO2薄膜相变过渡阶段的金属畴和绝缘畴体积分数的变化与薄膜的THz复电导率变化相结合,研究了IMT转变过程中VO2薄膜畴与畴之间的载流子输运机制。证明了在VO2薄膜金属相和绝缘相共存的非均匀体系中,IMT过程不仅是一个渗流转变过程,而且受到来自于金属畴边界的载流子弱约束效应的高度影响。这种约束效应阻碍了载流子的扩散,抑制了整个薄膜的有效THz电导率。因此,仅接近渗滤阈值(50%体积分数的相变),即形成载流子长程输运通路,不足以使VO2薄膜在THz频率范围内达到有效的调制效果。为了减弱相畴壁产生的约束效应,金属畴的体积分数需要达到更大值,这就解释了在热致相变过程中观察到的THz电导率转变过程远远滞后于拉曼显微镜测得的结构相变过程的现象。2.在将VO2薄膜应用于可调谐THz器件时,VO2薄膜的THz调制性能是器件动态调制性能的基础。在研究中发现,通过将Co掺杂到外延的VO2薄膜中,可以获得具有较低的临界温度、较大的调制深度和较窄的过渡窗口的VO2薄膜,这将有利于VO2薄膜在THz开关器件中的应用。在实验中,使用高分子辅助沉积法在M-Al2O3上沉积120 nm厚的Co掺杂VO2薄膜,当掺杂量达到4.0 at.%时,VO2薄膜经过极窄(3℃)的过渡窗口后就可以达到了77%的THz调制比。此外,通过X射线衍射分析发现,掺杂量过高(>4.0 at.%)会导致VO2薄膜中出现两种不同的相,导致THz调制率的下降。基于有效介质理论分析,可以认为在测试的温区,新出现的富Co元素的相不会发生IMT,一直保持对THz波高透过率,不具备THz开关调制能力。因此当掺杂量过高时,随着Co元素掺杂量的增大,富Co相占比增加,Co掺杂薄膜的THz调制比持续下降,而整体IMT临界温度没有发生变化。该研究基于相分离现象,对过渡金属掺杂对VO2的IMT的调制机制提出了新的见解,将有利于扩展掺杂VO2薄膜在THz领域的应用。3.将VO2薄膜与THz金属超表面复合可以获得谐振频率可调的THz超表面。实验中,将开口谐振环阵列与VO2多晶薄膜复合后,获得了THz开关调制比优于纯VO2薄膜的THz超表面。纯的多晶VO2薄膜THz调制比可以达到~43%,而将VO2薄膜与开口谐振环阵列复合后,在0.5 THz和0.9 THz处,复合超材料在VO2薄膜相变前后的调制深度达到了60%。使用电磁仿真软件对超结构中VO2薄膜IMT引入的动态传输特性的进行了分析,可以发现,VO2薄膜THz电导率的增大,以及介电常数的增加,对超结构的THz响应形成了明显的调制效果。4.通过将亚波长柔性波纹结构与VO2复合超结构结合,设计出具备机械-温度双响应模式的超宽带频率可调的THz超材料。VO2复合超结构的调制性能来源于相变材料的物理性能,因此将VO2复合超结构由常见的固定结构设计为可重构可形变的柔性结构,可以引入额外的THz可调谐性能。本研究将柔性单轴波纹结构与VO2复合超结构结合,有效地对超结构单元的空间排布进行可逆的调控。实验结果发现,基于VO2薄膜的IMT调控,只能使谐振频率从1.7 THz降低到1.4 THz,而对超结构施加拉伸应变后,可以实现超结构谐振频率从1.7 THz升高到2.1 THz。实验证明了制备的柔性THz超结构的响应,可以由基于材料的IMT调控和基于柔性化设计的结构调控同时实现,这大大拓展了可调谐超材料的功能性。本论文的研究成果有望提升研究者对VO2薄膜THz调制现象的理解,并将柔性电子工艺与可调谐超材料相结合,扩展了基于VO2薄膜的THz调制器件的功能与应用范围。
其他文献
随着空中交通的持续高速增长,新一代民航运输系统作为一个高分布、软件密集型、安全性为关键的社会技术系统,其复杂性和耦合性日益增加。云计算、大数据、人工智能等新一代信息技术在民航行业深化应用,尤其是空中交通控制系统,需要利用这些新技术解决复杂运行环境下安全、高效的保障服务难题。新技术的引入可能给空中交通控制系统带来新的事故致因,以组件故障模式为主导的传统安全分析方法在分析复杂的人为决策、软件错误、系统
高度近视及其并发症,是我国不可逆性视力受损以及致盲的重要原因。因此,寻找高度近视尚未明确的致病因素,探索发病分子机制,对于其有效防控具有重要意义。为探究高度近视的发病机制,本论文从遗传学角度发现疾病基因、体外体内功能实验探索疾病基因在近视中的作用。现将本论文研究结果总结如下:1、针对高度近视的候选基因进行关联性分析验证。以中国西南地域汉族高度近视人群为研究对象,探寻FGF10、PDGFRA、PAR
近年来,以铁氧化物纳米粒子(iron oxide nanoparticles,IONPs)为代表的磁性纳米材料受到了生物医学研究领域的密切关注,这主要是因为:其一,IONPs是一种无毒材料,具有良好的生物相容性和生物可降解性;其二,IONPs的表面易于改性和修饰,因而可在其表面连接功能化分子,实现包括肿瘤靶向、化疗药物和治疗基因的递送以及荧光成像在内的多种不同功能;其三,IONPs的磁学性质可控,
当今科技日新月异,新型功能材料的研究和发展变得日益重要,而掺杂是功能材料改性增强的重要方法之一。由于过渡金属离子具有丰富的光学和磁学性质,因而常用于各种功能材料的掺杂剂。对于掺杂后的材料来说,杂质周围的局部结构和电子态对材料性能有强烈影响,因此对于材料中杂质局部结构和电子性质的研究显得尤为重要,并可借助各种谱学手段进行研究。其中的典型代表就是电子顺磁共振(EPR)谱,它是研究过渡离子光学、磁学和局
管输煤浆与气化水煤浆浆体特性差异大,通过研究管输煤浆与气化水煤浆制浆工艺,分析2种工艺对制备原料煤选择、添加剂与助熔剂选择上的特点,对应用的主要设备进行了比较,重点阐述了磨机选型、进料口设置、介质配比的差异、筛分设备、厂区内输送泵及大型储罐形式与搅拌器的特征,以便为后续类似工程设计合理选择工艺与设备提供参考。
仿生扑翼微型飞行器,是一种通过模仿自然界飞行生物飞行机理实现扑翼飞行的小型飞行机器人。由于仿生扑翼飞行方式相比于人类熟知的固定翼和旋翼飞行方式所具备的多种优势,例如尺寸小、灵活性、隐蔽性以及仿生性等优势,使得仿生扑翼微型飞行器在民用探查、军事侦察和打击等领域具有广泛的应用前景,因此仿生扑翼微型飞行器已经成为未来无人飞行器研究和发展的热点。仿生扑翼微型飞行器主要是通过扑翼机构,将电机驱动的旋转运动转
航天科技的发展日新月异,以无人机为代表的航空飞行器变得越来越复杂,人们对航空器的稳定性、安全性和可靠性也提出了更高的要求。无人机飞控系统的故障诊断与容错控制技术可以提高航天器的自主运行能力。此外,复杂多变的空间环境不可避免地对无人机造成影响,自身长时间运行也会使系统产生不同类型的故障,其中44%是执行器故障造成的。因此,研究执行器的故障诊断和飞控系统的容错控制,对延长设备使用寿命,提高系统稳定运行
Cs-Pb-Br型卤化铅钙钛矿包括三维(3D)的CsPbBr3、零维(0D)的Cs4PbBr6、二维(2D)的CsPb2Br5等,因其具有强发光性能,被广泛应用于发光二极管、激光、太阳能电池等光电器件。其中,3D的CsPbBr3钙钛矿是唯一确定拥有本征光致发光(PL)性能的材料,而关于2D的CsPb2Br5钙钛矿和0D的Cs4PbBr6钙钛矿的发光来源却众说纷纭。部分研究者们认为纯的CsPb2Br
吸波技术在军用和民用领域均得到了广泛的应用,完美的吸波材料应该具有宽带、宽入射角度、极化不敏感、低剖面等特性。基于超材料设计理念的吸波体具有设计自由度高、结构简单、剖面低以及吸收率高等特点,这使得超材料吸波体具备实现完美吸波材料的潜力,在近十年得到了飞速的发展。超材料吸波体在带宽方面的研究已较为成熟,但对于宽角度超材料吸波体的吸收理论和设计方法的研究仍然相对欠缺,亟待挖掘新的设计理论和设计方法。本
光学微腔,通过循环谐振作用将光场长时间限制在其中,可极大地提升腔内光功率,因此被广泛应用于基础物理研究以及光电子器件领域。相比其他类型的光学微腔,回音壁模式光学微腔具有极高的品质因子与较小的模式体积,显著地增强了光与物质的相互作用,因此受到研究人员的极大关注。过去的二十年间,不同材料以及形态的回音壁模式光学微腔被发明并制备,以满足不同的研究与应用需求。基于回音壁模式光学微腔的非线性效应,特别是光学