运用从头算分子动力学研究羟基自由基在石墨烯表面的吸附

来源 :山东师范大学 | 被引量 : 0次 | 上传用户:garnettxin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
石墨烯常用的制备方法是通过深度氧化石墨再还原。但是通过这个途径得到的石墨烯,即使经过充分还原,含氧官能团也不可能完全消除,所以含氧官能团存在于石墨烯表面上是不可避免的。这样制备的石墨烯被称作还原氧化石墨烯。至今科学家们还不能确定氧化石墨烯的精确电子结构。羟基是氧化石墨烯构型中普遍认可存在的含氧基团,在还原氧化石墨烯过程中扮演重要的角色。本文使用从头算分子动力学(AIMD)对石墨烯表面吸附羟基进行了研究,计算过程是首先随机给出初始位置,通过求解电子的薛定谔方程得出体系的势能,对势能求一阶导数得到力,原子在此力场作用下运动到新的位置,然后反复计算直至AIMD计算结束。这样计算的优势是在计算过程中没有假设任何反应结构和反应路径,反应物的结构设置为随机的状态,即结构的坐标、初始速度和取向是随机的。在初始状态下,反应物之间不存在相互作用力。通过动力学计算我们得到羟基自由基在石墨烯表面的吸附结构是一致的,但是在5?5石墨烯表面只能吸附6个羟基。在第7个羟基下落轨迹的研究中我们没有找到吸附的情况,表明羟基自由基在此结构的石墨烯表面单侧吸附可以达到12%的覆盖率。羟基的所有吸附构型都位于碳原子的正上方,在计算羟基自由基的平均吸附能时我们发现平均吸附能随吸附羟基数目的增多而线性减小,即吸附能力线性增加。我们还计算了狄拉克锥处的带隙随羟基吸附数目的变化,发现带隙随吸附羟基数目的增加而线性增加,且带隙随平均吸附能的增加而线性减小。本文共计算了192条反应轨迹,统计反应轨迹时我们发现随吸附羟基数目的增多羟基之间更容易发生反应生成水分子和环氧基,在前3个羟基的吸附过程中没有水分子吸附在石墨烯表面的情况,而在吸附4个羟基之后出现水分子吸附在石墨烯表面羟基的情况,且随吸附羟基数目的增加吸附水分子的概率增加。在研究反应轨迹的过程中,我们发现前3个羟基自由基吸附轨迹存在物理吸附络合物和过渡态,其中反应能垒(过渡态与反应物的能量差值)基本是一致的。物理吸附络合物的羟基都位于碳原子之间桥位的上方,羟基的氧原子距离石墨烯表面碳原子距离随吸附数目增多逐渐减小。过渡态结构中羟基位于碳原子的正上方,氧原子与碳原子距离不随吸附羟基数目发生变化。我们通过AIMD计算模拟真实环境得到了羟基自由基在石墨烯表面吸附过程的结构和能量;带隙与吸附数目存在的关系可以为实现石墨烯可控功能化提供一定的帮助;所得到的结构,为确定工业生产中制备的石墨烯精确的结构提供理论的数据基础。
其他文献
拉曼散射技术通过对分子键振动以及转动信息的识别,从而达到无损的分子检测,因此受到科研人员的持续关注。但拉曼散射信号十分微弱,严重限制了拉曼散射技术的实际应用。由拉曼散射进一步发展的表面增强拉曼散射(SERS)能够显著增强拉曼散射信号,提高对分子检测的能力。基于SERS技术强大的检测分析功能,制备使用便捷、高性能(极高的灵敏度、良好的均匀性、可重复性)的SERS基底成为科研工作者追求的目标。近年来,
学位
Haber-Bosch工艺的出现提高了农作物的产量,养活了世界近一半的人口。然而,这一过程消耗了世界1.4%的总能源产出,每年产生3亿吨温室气体。因此,在能源化工领域实现源头及终端的节能减排是缓解日益严重的能源危机、达到“碳中和”目标的关键途径之一。而结合电驱动工艺的放电等离子体技术可接近零碳排放的最终目标。同时,随着脉冲功率技术在国防及民用领域的迅猛发展,具有高能量、高平均功率、高重复率等特性的
学位
具有独特性质的二维(2D)层状材料在光电探测方面展现出较大地优势。但是,基于二维材料的光电探测器通常有较大的暗电流,使得器件的开关比较低,限制了光电探测器的应用。肖特基结、p-n结或势垒层可以用来抑制暗电流,但这些方法也面临着许多困难。如二维材料的掺杂比较困难导致p-n结难以制备,势垒层的厚度如果控制不当会对光电流产生影响。传统的肖特基结是二维材料和三维金属接触形成的,但是费米钉扎效应的存在,使得
学位
非营利组织已成为活跃在世界舞台中的一支重要力量。随着经济全球化的深入、社会公共事物的日益复杂,所以学术、教育、医疗等行业陆续出现一些非营利组织,一定程度弥补政府管理上出现的欠缺,也提高了治理的效率,成为和千千万万人生活休戚相关的重要角色。而印尼经济体制和社会体制的改革也为印尼的非营利组织提供了广阔的发展平台。本文以印尼政府与非营利组织的互动关系进行研究,通过JEMBER市政府与非营利组织的互动关系
学位
氨是生产多种化学品的重要原料,低温等离子体合成氨技术,可以潜在地避免常规热催化氨合成的局限性,已成为将固氮与化石燃料脱钩的替代方法,其研究具有重要理论意义与应用价值。众多研究中,填充床介质阻挡放电(Dielectric Barrier Discharge,DBD)反应器,被认为是一种强化反应器内电场强度、更易产生均匀放电的等离子体反应器,其内部等离子体催化机制仅依靠实验诊断技术难以解析,需要详细的
学位
表面增强拉曼散射(SERS)技术的发展主要依靠高效SERS基底的设计,借助纳米间隙结构的等离激元耦合可激发产生高强度的局域电磁场(热点),进而有效提高SERS活性。设计制备精细可控的金属间隙进而实现对热点的调节,是获得强度高、均匀性好的SERS基底的关键。低维SERS基底中的热点数量相对较低,不能有效利用空间优势,并且稳定性差。三维SERS基底具有更大的比表面积、更高的热点密度,为基底设计制备提供
学位
计算材料学为人们提供了新的研究物质材料特性的方法,这使得材料学研究从单一的实验测量发展为计算机模拟与实验研究并行的形式。这一切的发展得益于密度泛函理论等第一性原理的发展以及计算机性能的提升。材料与人类的生产生活密不可分,如何选择合适的材料生产器件以及如何提升材料的性能始终是人类面对的重要课题。二维材料由于石墨烯的合成成为了当前的研究热点。由于超高的比表面积,优异的导电性和高载流子迁移率,出色的力学
学位
随着2004年石墨烯的发现,二维(2D)材料因其独特的结构和优异的物理化学性能而得到广泛的研究和应用。在过去的几十年中,出现了大量其他的二维材料,如过渡金属硫族化合物(TMDs)、六方氮化硼(h-BN)、硅烯、Ⅲ族单硫族化合物、Mxenes等。由于较大的比表面积、良好的光学性质和较高的载流子迁移率它们被广泛应用于光电器件、储能、光催化、传感等领域。2017年通过化学气相沉积(CVD)法合成的MoS
学位
细胞周期蛋白依赖性激酶(CDKs)属于丝氨酸-苏氨酸蛋白激酶家族,在调节细胞周期进程中发挥着不可替代的作用。研究表明,即使是CDKs的轻微失调也可能直接导致癌症的发生。因此,作为癌症治疗靶点的CDKs引起了人们广泛的关注。自2019年12月至今,由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的新型冠状病毒肺炎(COVID-19)在全球持续蔓延,对人类的生命健康和社会的经济发展造成了巨大
学位
表面等离激元传感技术已被广泛应用于现代科学的各个领域,相对比于传统的光学传感技术,表面等离激元传感器具备无损害、高灵敏、连续检测等特性,是传感领域的研究热点。其中,表面增强拉曼散射(SERS)和表面等离激元共振(SPR)传感器是表面等离激元传感器的重要组成部分。SERS是一项强大的指纹光谱分析技术,利用局域表面等离激元共振所产生的电磁场增强,能够实现较低浓度物质的直接检测。SPR传感器利用金属膜表
学位