论文部分内容阅读
高密度钨合金是一种以钨为基体,加入镍、铁、铜、钴、锰等元素组成的合金。高密度钨合金具有密度高、强度高、塑性好等优良性能,因此具有广泛的用途。其中,一种主要用途是用作动能穿甲材料,替代贫铀材料。要具备高的穿透能力,穿甲材料就必须同时具备高强度和高塑性。 本论文用粉末冶金方法,采用混料—冷等静压—氢气烧结—真空热处理的工艺流程,制备95W-Ni-Fe-Me(Me为Co或Mn等添加元素)样品。在材料试验机上测量合金的力学性能,用金相显微镜测定合金的晶粒平均尺寸,用SEM观察合金的组织和断口形貌,用EDS进行微区成分分析,用XRD分析合金的相组成。重点考察了Co、Mn添加量和烧结-真空热处理制度对95W合金材料的组织及力学性能的影响,得到了以下结果。 氢气烧结-真空热处理是制备高密度高塑性95W合金的理想方式。氧在95W合金中主要存在于钨晶粒边缘和残留孔隙表面,氧化物聚集的地方容易形成孔洞;氧的存在影响了Fe、Ni、Co在基体相中的均匀化扩散和烧结动力;采用氢气烧结可以充分脱氧。真空热处理可以有效地降低氢气烧结后氢的残留量,降低氢致塑性损伤作用,改善钨基界面的元素偏聚,降低合金加工表面的残余应力,从而可以提高95W合金的力学性能。 添加Co可以同时提高95W-Ni-Fe三元钨合金的强度和塑性。添加Mn能降低95W合金的烧结温度,在低温烧结时就可以获得较高的力学性能。但是,对强度和塑性要求都高的95W合金,需要在较高温度烧结,此时,只能选择添加Co,不能添加Mn,因为Mn在高温烧结时易形成孔洞,从而降低钨合金的强度和塑性。 随着烧结温度的提高,95W合金中的钨晶粒逐步长大,基体相在W晶粒之间由局部聚集状分布逐步过渡到网状分布,W/W晶粒的接触度降低,95W合金的强度和塑性都提高。 要得到高密度(18g/cm~3)、高强度(抗拉强度大于980MPa)、高塑性(延伸率大于28%)的95W合金,可以采用的材质为95W-3.15Ni-1.35Fe-0.5Co,推荐的烧结及热处理工艺为:先在干氢-湿氢双气氛下烧结,烧结温度1540℃、保温时间1h;然后进行真空热处理,热处理温度1200℃、保温时间5h。